Cargando…
Large Amino Acid Mimicking Selenium-Doped Carbon Quantum Dots for Multi-Target Therapy of Alzheimer’s Disease
Multi-target intervention and synergistic treatment are critical for the drug development of Alzheimer’s disease (AD) due to its complex and multifactional nature. Oxidative stress and amyloid β peptides (Aβ) accumulation have been recognized as therapeutic targets for AD. Herein, with ability to in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579002/ https://www.ncbi.nlm.nih.gov/pubmed/34776988 http://dx.doi.org/10.3389/fphar.2021.778613 |
_version_ | 1784596353179975680 |
---|---|
author | Zhou, Xi Hu, Shuyang Wang, Shuangling Pang, Yu Lin, Yulong Li, Meng |
author_facet | Zhou, Xi Hu, Shuyang Wang, Shuangling Pang, Yu Lin, Yulong Li, Meng |
author_sort | Zhou, Xi |
collection | PubMed |
description | Multi-target intervention and synergistic treatment are critical for the drug development of Alzheimer’s disease (AD) due to its complex and multifactional nature. Oxidative stress and amyloid β peptides (Aβ) accumulation have been recognized as therapeutic targets for AD. Herein, with ability to inhibit Aβ aggregation and the broad-spectrum antioxidant properties, the large amino acid mimicking selenium-doped carbon quantum dots (SeCQDs) are presented as novel nanoagents for multi-target therapy of AD. Compared with the precursor, selenocystine, SeCQDs which maintain the intrinsic properties of both selenium and carbon quantum dots (CQDs) possess good biocompatibility and a remarkable ROS-scavenging activity. Moreover, the functionalized α-carboxyl and amino groups on edge of SeCQDs can trigger multivalent interactions with Aβ, leading to the ability of SeCQDs to inhibit Aβ aggregation. In vivo study demonstrated that SeCQDs can significantly ameliorate the Aβ induced memory deficits, reduce Aβ accumulation and inhibit neuron degeneration in AD model rats. The versatility of functionalization and potential ability to cross the blood-brain barrier (BBB) make SeCQDs as prospective nanodrugs for treating AD. |
format | Online Article Text |
id | pubmed-8579002 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85790022021-11-11 Large Amino Acid Mimicking Selenium-Doped Carbon Quantum Dots for Multi-Target Therapy of Alzheimer’s Disease Zhou, Xi Hu, Shuyang Wang, Shuangling Pang, Yu Lin, Yulong Li, Meng Front Pharmacol Pharmacology Multi-target intervention and synergistic treatment are critical for the drug development of Alzheimer’s disease (AD) due to its complex and multifactional nature. Oxidative stress and amyloid β peptides (Aβ) accumulation have been recognized as therapeutic targets for AD. Herein, with ability to inhibit Aβ aggregation and the broad-spectrum antioxidant properties, the large amino acid mimicking selenium-doped carbon quantum dots (SeCQDs) are presented as novel nanoagents for multi-target therapy of AD. Compared with the precursor, selenocystine, SeCQDs which maintain the intrinsic properties of both selenium and carbon quantum dots (CQDs) possess good biocompatibility and a remarkable ROS-scavenging activity. Moreover, the functionalized α-carboxyl and amino groups on edge of SeCQDs can trigger multivalent interactions with Aβ, leading to the ability of SeCQDs to inhibit Aβ aggregation. In vivo study demonstrated that SeCQDs can significantly ameliorate the Aβ induced memory deficits, reduce Aβ accumulation and inhibit neuron degeneration in AD model rats. The versatility of functionalization and potential ability to cross the blood-brain barrier (BBB) make SeCQDs as prospective nanodrugs for treating AD. Frontiers Media S.A. 2021-10-27 /pmc/articles/PMC8579002/ /pubmed/34776988 http://dx.doi.org/10.3389/fphar.2021.778613 Text en Copyright © 2021 Zhou, Hu, Wang, Pang, Lin and Li. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Pharmacology Zhou, Xi Hu, Shuyang Wang, Shuangling Pang, Yu Lin, Yulong Li, Meng Large Amino Acid Mimicking Selenium-Doped Carbon Quantum Dots for Multi-Target Therapy of Alzheimer’s Disease |
title | Large Amino Acid Mimicking Selenium-Doped Carbon Quantum Dots for Multi-Target Therapy of Alzheimer’s Disease |
title_full | Large Amino Acid Mimicking Selenium-Doped Carbon Quantum Dots for Multi-Target Therapy of Alzheimer’s Disease |
title_fullStr | Large Amino Acid Mimicking Selenium-Doped Carbon Quantum Dots for Multi-Target Therapy of Alzheimer’s Disease |
title_full_unstemmed | Large Amino Acid Mimicking Selenium-Doped Carbon Quantum Dots for Multi-Target Therapy of Alzheimer’s Disease |
title_short | Large Amino Acid Mimicking Selenium-Doped Carbon Quantum Dots for Multi-Target Therapy of Alzheimer’s Disease |
title_sort | large amino acid mimicking selenium-doped carbon quantum dots for multi-target therapy of alzheimer’s disease |
topic | Pharmacology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579002/ https://www.ncbi.nlm.nih.gov/pubmed/34776988 http://dx.doi.org/10.3389/fphar.2021.778613 |
work_keys_str_mv | AT zhouxi largeaminoacidmimickingseleniumdopedcarbonquantumdotsformultitargettherapyofalzheimersdisease AT hushuyang largeaminoacidmimickingseleniumdopedcarbonquantumdotsformultitargettherapyofalzheimersdisease AT wangshuangling largeaminoacidmimickingseleniumdopedcarbonquantumdotsformultitargettherapyofalzheimersdisease AT pangyu largeaminoacidmimickingseleniumdopedcarbonquantumdotsformultitargettherapyofalzheimersdisease AT linyulong largeaminoacidmimickingseleniumdopedcarbonquantumdotsformultitargettherapyofalzheimersdisease AT limeng largeaminoacidmimickingseleniumdopedcarbonquantumdotsformultitargettherapyofalzheimersdisease |