Cargando…
Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes
Mechanical events and alterations in neuronal morphology that accompany neuronal activity have been observed for decades. However, no clear neurophysiological role, nor an agreed molecular mechanism relating these events to the electrochemical process, has been found. Here we hypothesized that inten...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579013/ https://www.ncbi.nlm.nih.gov/pubmed/34776865 http://dx.doi.org/10.3389/fnmol.2021.757264 |
_version_ | 1784596355334799360 |
---|---|
author | Yehuda, Bossmat Gradus Pery, Tal Ophir, Efrat Blumenfeld-Katzir, Tamar Sheinin, Anton Alon, Yael Danino, Noy Perlson, Eran Nevo, Uri |
author_facet | Yehuda, Bossmat Gradus Pery, Tal Ophir, Efrat Blumenfeld-Katzir, Tamar Sheinin, Anton Alon, Yael Danino, Noy Perlson, Eran Nevo, Uri |
author_sort | Yehuda, Bossmat |
collection | PubMed |
description | Mechanical events and alterations in neuronal morphology that accompany neuronal activity have been observed for decades. However, no clear neurophysiological role, nor an agreed molecular mechanism relating these events to the electrochemical process, has been found. Here we hypothesized that intense, yet physiological, electrical activity in neurons triggers cytoskeletal depolymerization. We excited the sciatic nerve of anesthetized mice with repetitive electric pulses (5, 10, and 100 Hz) for 1 and 2 min and immediately fixed the excised nerves. We then scanned the excised nerves with high-resolution transmission electron microscopy, and quantified cytoskeletal changes in the resulting micrographs. We demonstrate that excitation with a stimulation frequency that is within the physiological regime is accompanied by a significant reduction in the density of cytoskeletal proteins relative to the baseline values recorded in control nerves. After 10 Hz stimulation with durations of 1 and 2 min, neurofilaments density dropped to 55.8 and 51.1% of the baseline median values, respectively. In the same experiments, microtubules density dropped to 23.7 and 38.5% of the baseline median values, respectively. These changes were also accompanied by a reduction in the cytoskeleton-to-cytoplasm contrast that we attribute to the presence of depolymerized electron-dense molecules in the lumen. Thus, we demonstrate with an in vivo model a link between electrical activity and immediate cytoskeleton rearrangement at the nano-scale. We suggest that this cytoskeletal plasticity reduces cellular stiffness and allows cellular homeostasis, maintenance of neuronal morphology and that it facilitates in later stages growth of the neuronal projections. |
format | Online Article Text |
id | pubmed-8579013 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85790132021-11-11 Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes Yehuda, Bossmat Gradus Pery, Tal Ophir, Efrat Blumenfeld-Katzir, Tamar Sheinin, Anton Alon, Yael Danino, Noy Perlson, Eran Nevo, Uri Front Mol Neurosci Molecular Neuroscience Mechanical events and alterations in neuronal morphology that accompany neuronal activity have been observed for decades. However, no clear neurophysiological role, nor an agreed molecular mechanism relating these events to the electrochemical process, has been found. Here we hypothesized that intense, yet physiological, electrical activity in neurons triggers cytoskeletal depolymerization. We excited the sciatic nerve of anesthetized mice with repetitive electric pulses (5, 10, and 100 Hz) for 1 and 2 min and immediately fixed the excised nerves. We then scanned the excised nerves with high-resolution transmission electron microscopy, and quantified cytoskeletal changes in the resulting micrographs. We demonstrate that excitation with a stimulation frequency that is within the physiological regime is accompanied by a significant reduction in the density of cytoskeletal proteins relative to the baseline values recorded in control nerves. After 10 Hz stimulation with durations of 1 and 2 min, neurofilaments density dropped to 55.8 and 51.1% of the baseline median values, respectively. In the same experiments, microtubules density dropped to 23.7 and 38.5% of the baseline median values, respectively. These changes were also accompanied by a reduction in the cytoskeleton-to-cytoplasm contrast that we attribute to the presence of depolymerized electron-dense molecules in the lumen. Thus, we demonstrate with an in vivo model a link between electrical activity and immediate cytoskeleton rearrangement at the nano-scale. We suggest that this cytoskeletal plasticity reduces cellular stiffness and allows cellular homeostasis, maintenance of neuronal morphology and that it facilitates in later stages growth of the neuronal projections. Frontiers Media S.A. 2021-10-27 /pmc/articles/PMC8579013/ /pubmed/34776865 http://dx.doi.org/10.3389/fnmol.2021.757264 Text en Copyright © 2021 Yehuda, Gradus Pery, Ophir, Blumenfeld-Katzir, Sheinin, Alon, Danino, Perlson and Nevo. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Neuroscience Yehuda, Bossmat Gradus Pery, Tal Ophir, Efrat Blumenfeld-Katzir, Tamar Sheinin, Anton Alon, Yael Danino, Noy Perlson, Eran Nevo, Uri Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes |
title | Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes |
title_full | Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes |
title_fullStr | Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes |
title_full_unstemmed | Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes |
title_short | Neuronal Activity in the Sciatic Nerve Is Accompanied by Immediate Cytoskeletal Changes |
title_sort | neuronal activity in the sciatic nerve is accompanied by immediate cytoskeletal changes |
topic | Molecular Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579013/ https://www.ncbi.nlm.nih.gov/pubmed/34776865 http://dx.doi.org/10.3389/fnmol.2021.757264 |
work_keys_str_mv | AT yehudabossmat neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges AT gradusperytal neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges AT ophirefrat neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges AT blumenfeldkatzirtamar neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges AT sheininanton neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges AT alonyael neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges AT daninonoy neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges AT perlsoneran neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges AT nevouri neuronalactivityinthesciaticnerveisaccompaniedbyimmediatecytoskeletalchanges |