Cargando…
Combinatorial Click Chemistry Labeling to Study Live Human Gut-Derived Microbiota Communities
Gut bacteria were shown to exert pivotal effects on health and disease. However, mechanistic studies of gut bacterial communities are limited due to the lack of technologies for real-time studies on live bacteria. Here, we developed COMBInatorial cliCK-chemistry (COMBICK) labeling on human gut-deriv...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579052/ https://www.ncbi.nlm.nih.gov/pubmed/34777302 http://dx.doi.org/10.3389/fmicb.2021.750624 |
Sumario: | Gut bacteria were shown to exert pivotal effects on health and disease. However, mechanistic studies of gut bacterial communities are limited due to the lack of technologies for real-time studies on live bacteria. Here, we developed COMBInatorial cliCK-chemistry (COMBICK) labeling on human gut-derived bacteria, both aerobic and anaerobic strains, to enable dynamic tracing of live, heterogeneous bacterial communities on the strain level, including clinical isolates of the Enterobacteriaceae family. We further show that COMBICK labeling is applicable on anaerobic bacterial strains directly isolated from stool. In COMBICK, the number of labeled bacteria that can be simultaneously differentiated increases exponentially depending on the availability of fluorophores and machine capabilities. This method allows real-time studies of bacterial communities from a variety of ecosystems, and can significantly advance mechanistic research in the microbiome field. |
---|