Cargando…
OnionNet-2: A Convolutional Neural Network Model for Predicting Protein-Ligand Binding Affinity Based on Residue-Atom Contacting Shells
One key task in virtual screening is to accurately predict the binding affinity (△G) of protein-ligand complexes. Recently, deep learning (DL) has significantly increased the predicting accuracy of scoring functions due to the extraordinary ability of DL to extract useful features from raw data. Nev...
Autores principales: | Wang, Zechen, Zheng, Liangzhen, Liu, Yang, Qu, Yuanyuan, Li, Yong-Qiang, Zhao, Mingwen, Mu , Yuguang, Li , Weifeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579074/ https://www.ncbi.nlm.nih.gov/pubmed/34778208 http://dx.doi.org/10.3389/fchem.2021.753002 |
Ejemplares similares
-
OnionNet: a Multiple-Layer Intermolecular-Contact-Based
Convolutional Neural Network for Protein–Ligand Binding Affinity
Prediction
por: Zheng, Liangzhen, et al.
Publicado: (2019) -
SE-OnionNet: A Convolution Neural Network for Protein–Ligand Binding Affinity Prediction
por: Wang, Shudong, et al.
Publicado: (2021) -
Improving protein–ligand docking and screening accuracies by incorporating a scoring function correction term
por: Zheng, Liangzhen, et al.
Publicado: (2022) -
Modification of the existing maximum residue levels for benzovindiflupyr in leeks and spring onions/green onions/Welsh onions
por: Bellisai, Giulia, et al.
Publicado: (2021) -
Tuning the binding behaviors of a protein YAP65WW domain on graphenic nano-sheets with boron or nitrogen atom doping
por: Jia, Xiao, et al.
Publicado: (2020)