Cargando…
Deep Learning-Based Computer-Aided Detection System for Automated Treatment Response Assessment of Brain Metastases on 3D MRI
BACKGROUND: Although accurate treatment response assessment for brain metastases (BMs) is crucial, it is highly labor intensive. This retrospective study aimed to develop a computer-aided detection (CAD) system for automated BM detection and treatment response evaluation using deep learning. METHODS...
Autores principales: | Cho, Jungheum, Kim, Young Jae, Sunwoo, Leonard, Lee, Gi Pyo, Nguyen, Toan Quang, Cho, Se Jin, Baik, Sung Hyun, Bae, Yun Jung, Choi, Byung Se, Jung, Cheolkyu, Sohn, Chul-Ho, Han, Jung-Ho, Kim, Chae-Yong, Kim, Kwang Gi, Kim, Jae Hyoung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579083/ https://www.ncbi.nlm.nih.gov/pubmed/34778056 http://dx.doi.org/10.3389/fonc.2021.739639 |
Ejemplares similares
-
MRI Texture Analysis for the Prediction of Stereotactic Radiosurgery Outcomes in Brain Metastases from Lung Cancer
por: Park, Jung Hyun, et al.
Publicado: (2021) -
Classification of true progression after radiotherapy of brain metastasis on MRI using artificial intelligence: a systematic review and meta-analysis
por: Kim, Hae Young, et al.
Publicado: (2021) -
A Nationwide Web-Based Survey of Neuroradiologists’ Perceptions of Artificial Intelligence Software for Neuro-Applications in Korea
por: Choi, Hyunsu, et al.
Publicado: (2023) -
Predictive accuracy of T2-FLAIR mismatch sign for the IDH-mutant, 1p/19q noncodeleted low-grade glioma: An updated systematic review and meta-analysis
por: Do, Yoon Ah, et al.
Publicado: (2022) -
Computer-aided detection of brain metastasis on 3D MR imaging: Observer performance study
por: Sunwoo, Leonard, et al.
Publicado: (2017)