Cargando…
Predicting the Easiness and Complexity of English Health Materials for International Tertiary Students With Linguistically Enhanced Machine Learning Algorithms: Development and Validation Study
BACKGROUND: There is an increasing body of research on the development of machine learning algorithms in the evaluation of online health educational resources for specific readerships. Machine learning algorithms are known for their lack of interpretability compared with statistics. Given their high...
Autores principales: | Xie, Wenxiu, Ji, Christine, Hao, Tianyong, Chow, Chi-Yin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579219/ https://www.ncbi.nlm.nih.gov/pubmed/34698644 http://dx.doi.org/10.2196/25110 |
Ejemplares similares
-
Predicting Writing Styles of Web-Based Materials for Children’s Health Education Using the Selection of Semantic Features: Machine Learning Approach
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Predicting Risks of Machine Translations of Public Health Resources by Developing Interpretable Machine Learning Classifiers
por: Xie, Wenxiu, et al.
Publicado: (2021) -
Predicting Health Material Accessibility: Development of Machine Learning Algorithms
por: Ji, Meng, et al.
Publicado: (2021) -
Linguistics in remedial English
por: Fisher, John C
Publicado: (2017) -
Correction: Predicting Health Material Accessibility: Development of Machine Learning Algorithms
por: Ji, Meng, et al.
Publicado: (2021)