Cargando…

Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii

Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodionov, Dmitry A., Rodionova, Irina A., Rodionov, Vladimir A., Arzamasov, Aleksandr A., Zhang, Ke, Rubinstein, Gabriel M., Tanwee, Tania N. N., Bing, Ryan G., Crosby, James R., Nookaew, Intawat, Basen, Mirko, Brown, Steven D., Wilson, Charlotte M., Klingeman, Dawn M., Poole, Farris L., Zhang, Ying, Kelly, Robert M., Adams, Michael W. W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579813/
https://www.ncbi.nlm.nih.gov/pubmed/34060910
http://dx.doi.org/10.1128/mSystems.01345-20
_version_ 1784596501168652288
author Rodionov, Dmitry A.
Rodionova, Irina A.
Rodionov, Vladimir A.
Arzamasov, Aleksandr A.
Zhang, Ke
Rubinstein, Gabriel M.
Tanwee, Tania N. N.
Bing, Ryan G.
Crosby, James R.
Nookaew, Intawat
Basen, Mirko
Brown, Steven D.
Wilson, Charlotte M.
Klingeman, Dawn M.
Poole, Farris L.
Zhang, Ying
Kelly, Robert M.
Adams, Michael W. W.
author_facet Rodionov, Dmitry A.
Rodionova, Irina A.
Rodionov, Vladimir A.
Arzamasov, Aleksandr A.
Zhang, Ke
Rubinstein, Gabriel M.
Tanwee, Tania N. N.
Bing, Ryan G.
Crosby, James R.
Nookaew, Intawat
Basen, Mirko
Brown, Steven D.
Wilson, Charlotte M.
Klingeman, Dawn M.
Poole, Farris L.
Zhang, Ying
Kelly, Robert M.
Adams, Michael W. W.
author_sort Rodionov, Dmitry A.
collection PubMed
description Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge.
format Online
Article
Text
id pubmed-8579813
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-85798132021-11-10 Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii Rodionov, Dmitry A. Rodionova, Irina A. Rodionov, Vladimir A. Arzamasov, Aleksandr A. Zhang, Ke Rubinstein, Gabriel M. Tanwee, Tania N. N. Bing, Ryan G. Crosby, James R. Nookaew, Intawat Basen, Mirko Brown, Steven D. Wilson, Charlotte M. Klingeman, Dawn M. Poole, Farris L. Zhang, Ying Kelly, Robert M. Adams, Michael W. W. mSystems Research Article Extremely thermophilic bacteria from the genus Caldicellulosiruptor can degrade polysaccharide components of plant cell walls and subsequently utilize the constituting mono- and oligosaccharides. Through metabolic engineering, ethanol and other industrially important end products can be produced. Previous experimental studies identified a variety of carbohydrate-active enzymes in model species Caldicellulosiruptor saccharolyticus and Caldicellulosiruptor bescii, while prior transcriptomic experiments identified their putative carbohydrate uptake transporters. We investigated the mechanisms of transcriptional regulation of carbohydrate utilization genes using a comparative genomics approach applied to 14 Caldicellulosiruptor species. The reconstruction of carbohydrate utilization regulatory network includes the predicted binding sites for 34 mostly local regulators and point to the regulatory mechanisms controlling expression of genes involved in degradation of plant biomass. The Rex and CggR regulons control the central glycolytic and primary redox reactions. The identified transcription factor binding sites and regulons were validated with transcriptomic and transcription start site experimental data for C. bescii grown on cellulose, cellobiose, glucose, xylan, and xylose. The XylR and XynR regulons control xylan-induced transcriptional response of genes involved in degradation of xylan and xylose utilization. The reconstructed regulons informed the carbohydrate utilization reconstruction analysis and improved functional annotations of 51 transporters and 11 catabolic enzymes. Using gene deletion, we confirmed that the shared ATPase component MsmK is essential for growth on oligo- and polysaccharides but not for the utilization of monosaccharides. By elucidating the carbohydrate utilization framework in C. bescii, strategies for metabolic engineering can be pursued to optimize yields of bio-based fuels and chemicals from lignocellulose. IMPORTANCE To develop functional metabolic engineering platforms for nonmodel microorganisms, a comprehensive understanding of the physiological and metabolic characteristics is critical. Caldicellulosiruptor bescii and other species in this genus have untapped potential for conversion of unpretreated plant biomass into industrial fuels and chemicals. The highly interactive and complex machinery used by C. bescii to acquire and process complex carbohydrates contained in lignocellulose was elucidated here to complement related efforts to develop a metabolic engineering platform with this bacterium. Guided by the findings here, a clearer picture of how C. bescii natively drives carbohydrate utilization is provided and strategies to engineer this bacterium for optimal conversion of lignocellulose to commercial products emerge. American Society for Microbiology 2021-06-01 /pmc/articles/PMC8579813/ /pubmed/34060910 http://dx.doi.org/10.1128/mSystems.01345-20 Text en Copyright © 2021 Rodionov et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Rodionov, Dmitry A.
Rodionova, Irina A.
Rodionov, Vladimir A.
Arzamasov, Aleksandr A.
Zhang, Ke
Rubinstein, Gabriel M.
Tanwee, Tania N. N.
Bing, Ryan G.
Crosby, James R.
Nookaew, Intawat
Basen, Mirko
Brown, Steven D.
Wilson, Charlotte M.
Klingeman, Dawn M.
Poole, Farris L.
Zhang, Ying
Kelly, Robert M.
Adams, Michael W. W.
Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii
title Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii
title_full Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii
title_fullStr Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii
title_full_unstemmed Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii
title_short Transcriptional Regulation of Plant Biomass Degradation and Carbohydrate Utilization Genes in the Extreme Thermophile Caldicellulosiruptor bescii
title_sort transcriptional regulation of plant biomass degradation and carbohydrate utilization genes in the extreme thermophile caldicellulosiruptor bescii
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579813/
https://www.ncbi.nlm.nih.gov/pubmed/34060910
http://dx.doi.org/10.1128/mSystems.01345-20
work_keys_str_mv AT rodionovdmitrya transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT rodionovairinaa transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT rodionovvladimira transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT arzamasovaleksandra transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT zhangke transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT rubinsteingabrielm transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT tanweetaniann transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT bingryang transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT crosbyjamesr transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT nookaewintawat transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT basenmirko transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT brownstevend transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT wilsoncharlottem transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT klingemandawnm transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT poolefarrisl transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT zhangying transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT kellyrobertm transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii
AT adamsmichaelww transcriptionalregulationofplantbiomassdegradationandcarbohydrateutilizationgenesintheextremethermophilecaldicellulosiruptorbescii