Cargando…
DeepReac+: deep active learning for quantitative modeling of organic chemical reactions
Various computational methods have been developed for quantitative modeling of organic chemical reactions; however, the lack of universality as well as the requirement of large amounts of experimental data limit their broad applications. Here, we present DeepReac+, an efficient and universal computa...
Autores principales: | Gong, Yukang, Xue, Dongyu, Chuai, Guohui, Yu, Jing, Liu, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580052/ https://www.ncbi.nlm.nih.gov/pubmed/34880997 http://dx.doi.org/10.1039/d1sc02087k |
Ejemplares similares
-
DeepCRISPR: optimized CRISPR guide RNA design by deep learning
por: Chuai, Guohui, et al.
Publicado: (2018) -
Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns
por: Cova, Tânia F. G. G., et al.
Publicado: (2019) -
Optimizing Chemical Reactions with Deep Reinforcement Learning
por: Zhou, Zhenpeng, et al.
Publicado: (2017) -
55256 ReacStick: From Conception to Commercialization
por: Bernard, Alec, et al.
Publicado: (2021) -
Editorial: Solvation effects of organic reactions in ionic liquids, deep eutectic solvents, and conventional solvents
por: Dey, Ranjan
Publicado: (2023)