Cargando…
Choosing the right molecular machine learning potential
Quantum-chemistry simulations based on potential energy surfaces of molecules provide invaluable insight into the physicochemical processes at the atomistic level and yield such important observables as reaction rates and spectra. Machine learning potentials promise to significantly reduce the compu...
Autores principales: | Pinheiro, Max, Ge, Fuchun, Ferré, Nicolas, Dral, Pavlo O., Barbatti, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580106/ https://www.ncbi.nlm.nih.gov/pubmed/34880991 http://dx.doi.org/10.1039/d1sc03564a |
Ejemplares similares
-
MLatom 2: An Integrative Platform for Atomistic Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2021) -
Nonadiabatic Excited-State Dynamics with Machine Learning
por: Dral, Pavlo O., et al.
Publicado: (2018) -
Machine Learning for Absorption Cross Sections
por: Xue, Bao-Xin, et al.
Publicado: (2020) -
WS22 database, Wigner Sampling and geometry interpolation for configurationally diverse molecular datasets
por: Pinheiro Jr, Max, et al.
Publicado: (2023) -
Interpretable Machine Learning of Two‐Photon Absorption
por: Su, Yuming, et al.
Publicado: (2023)