Cargando…

Phase transition specified by a binary code patterns the vertebrate eye cup

The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Balasubramanian, Revathi, Min, Xuanyu, Quinn, Peter M. J., Giudice, Quentin Lo, Tao, Chenqi, Polanco, Karina, Makrides, Neoklis, Peregrin, John, Bouaziz, Michael, Mao, Yingyu, Wang, Qian, da Costa, Bruna L., Buenaventura, Diego, Wang, Fen, Ma, Liang, Tsang, Stephen H., Fabre, Pierre J., Zhang, Xin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580326/
https://www.ncbi.nlm.nih.gov/pubmed/34757798
http://dx.doi.org/10.1126/sciadv.abj9846
_version_ 1784596590023933952
author Balasubramanian, Revathi
Min, Xuanyu
Quinn, Peter M. J.
Giudice, Quentin Lo
Tao, Chenqi
Polanco, Karina
Makrides, Neoklis
Peregrin, John
Bouaziz, Michael
Mao, Yingyu
Wang, Qian
da Costa, Bruna L.
Buenaventura, Diego
Wang, Fen
Ma, Liang
Tsang, Stephen H.
Fabre, Pierre J.
Zhang, Xin
author_facet Balasubramanian, Revathi
Min, Xuanyu
Quinn, Peter M. J.
Giudice, Quentin Lo
Tao, Chenqi
Polanco, Karina
Makrides, Neoklis
Peregrin, John
Bouaziz, Michael
Mao, Yingyu
Wang, Qian
da Costa, Bruna L.
Buenaventura, Diego
Wang, Fen
Ma, Liang
Tsang, Stephen H.
Fabre, Pierre J.
Zhang, Xin
author_sort Balasubramanian, Revathi
collection PubMed
description The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differentiation, and survival, which is balanced by an evolutionarily conserved Wnt signaling gradient. FGF promotes Wnt signaling in the CM by stabilizing β-catenin in a GSK3β-independent manner. While Wnt signaling converts the NR to either the CM or the RPE depending on FGF signaling, FGF transforms the RPE to the NR or CM dependent on Wnt activity. The default fate of the eye cup is the NR, but synergistic FGF and Wnt signaling promotes CM formation both in vivo and in human retinal organoid. Our study reveals that the vertebrate eye develops through phase transition determined by a combinatorial code of FGF and Wnt signaling.
format Online
Article
Text
id pubmed-8580326
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-85803262021-11-18 Phase transition specified by a binary code patterns the vertebrate eye cup Balasubramanian, Revathi Min, Xuanyu Quinn, Peter M. J. Giudice, Quentin Lo Tao, Chenqi Polanco, Karina Makrides, Neoklis Peregrin, John Bouaziz, Michael Mao, Yingyu Wang, Qian da Costa, Bruna L. Buenaventura, Diego Wang, Fen Ma, Liang Tsang, Stephen H. Fabre, Pierre J. Zhang, Xin Sci Adv Biomedicine and Life Sciences The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differentiation, and survival, which is balanced by an evolutionarily conserved Wnt signaling gradient. FGF promotes Wnt signaling in the CM by stabilizing β-catenin in a GSK3β-independent manner. While Wnt signaling converts the NR to either the CM or the RPE depending on FGF signaling, FGF transforms the RPE to the NR or CM dependent on Wnt activity. The default fate of the eye cup is the NR, but synergistic FGF and Wnt signaling promotes CM formation both in vivo and in human retinal organoid. Our study reveals that the vertebrate eye develops through phase transition determined by a combinatorial code of FGF and Wnt signaling. American Association for the Advancement of Science 2021-11-10 /pmc/articles/PMC8580326/ /pubmed/34757798 http://dx.doi.org/10.1126/sciadv.abj9846 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Balasubramanian, Revathi
Min, Xuanyu
Quinn, Peter M. J.
Giudice, Quentin Lo
Tao, Chenqi
Polanco, Karina
Makrides, Neoklis
Peregrin, John
Bouaziz, Michael
Mao, Yingyu
Wang, Qian
da Costa, Bruna L.
Buenaventura, Diego
Wang, Fen
Ma, Liang
Tsang, Stephen H.
Fabre, Pierre J.
Zhang, Xin
Phase transition specified by a binary code patterns the vertebrate eye cup
title Phase transition specified by a binary code patterns the vertebrate eye cup
title_full Phase transition specified by a binary code patterns the vertebrate eye cup
title_fullStr Phase transition specified by a binary code patterns the vertebrate eye cup
title_full_unstemmed Phase transition specified by a binary code patterns the vertebrate eye cup
title_short Phase transition specified by a binary code patterns the vertebrate eye cup
title_sort phase transition specified by a binary code patterns the vertebrate eye cup
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580326/
https://www.ncbi.nlm.nih.gov/pubmed/34757798
http://dx.doi.org/10.1126/sciadv.abj9846
work_keys_str_mv AT balasubramanianrevathi phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT minxuanyu phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT quinnpetermj phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT giudicequentinlo phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT taochenqi phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT polancokarina phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT makridesneoklis phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT peregrinjohn phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT bouazizmichael phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT maoyingyu phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT wangqian phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT dacostabrunal phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT buenaventuradiego phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT wangfen phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT maliang phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT tsangstephenh phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT fabrepierrej phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup
AT zhangxin phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup