Cargando…
Phase transition specified by a binary code patterns the vertebrate eye cup
The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differe...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580326/ https://www.ncbi.nlm.nih.gov/pubmed/34757798 http://dx.doi.org/10.1126/sciadv.abj9846 |
_version_ | 1784596590023933952 |
---|---|
author | Balasubramanian, Revathi Min, Xuanyu Quinn, Peter M. J. Giudice, Quentin Lo Tao, Chenqi Polanco, Karina Makrides, Neoklis Peregrin, John Bouaziz, Michael Mao, Yingyu Wang, Qian da Costa, Bruna L. Buenaventura, Diego Wang, Fen Ma, Liang Tsang, Stephen H. Fabre, Pierre J. Zhang, Xin |
author_facet | Balasubramanian, Revathi Min, Xuanyu Quinn, Peter M. J. Giudice, Quentin Lo Tao, Chenqi Polanco, Karina Makrides, Neoklis Peregrin, John Bouaziz, Michael Mao, Yingyu Wang, Qian da Costa, Bruna L. Buenaventura, Diego Wang, Fen Ma, Liang Tsang, Stephen H. Fabre, Pierre J. Zhang, Xin |
author_sort | Balasubramanian, Revathi |
collection | PubMed |
description | The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differentiation, and survival, which is balanced by an evolutionarily conserved Wnt signaling gradient. FGF promotes Wnt signaling in the CM by stabilizing β-catenin in a GSK3β-independent manner. While Wnt signaling converts the NR to either the CM or the RPE depending on FGF signaling, FGF transforms the RPE to the NR or CM dependent on Wnt activity. The default fate of the eye cup is the NR, but synergistic FGF and Wnt signaling promotes CM formation both in vivo and in human retinal organoid. Our study reveals that the vertebrate eye develops through phase transition determined by a combinatorial code of FGF and Wnt signaling. |
format | Online Article Text |
id | pubmed-8580326 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85803262021-11-18 Phase transition specified by a binary code patterns the vertebrate eye cup Balasubramanian, Revathi Min, Xuanyu Quinn, Peter M. J. Giudice, Quentin Lo Tao, Chenqi Polanco, Karina Makrides, Neoklis Peregrin, John Bouaziz, Michael Mao, Yingyu Wang, Qian da Costa, Bruna L. Buenaventura, Diego Wang, Fen Ma, Liang Tsang, Stephen H. Fabre, Pierre J. Zhang, Xin Sci Adv Biomedicine and Life Sciences The developing vertebrate eye cup is partitioned into the neural retina (NR), the retinal pigmented epithelium (RPE), and the ciliary margin (CM). By single-cell analysis, we showed that fibroblast growth factor (FGF) signaling regulates the CM in its stem cell–like property of self-renewal, differentiation, and survival, which is balanced by an evolutionarily conserved Wnt signaling gradient. FGF promotes Wnt signaling in the CM by stabilizing β-catenin in a GSK3β-independent manner. While Wnt signaling converts the NR to either the CM or the RPE depending on FGF signaling, FGF transforms the RPE to the NR or CM dependent on Wnt activity. The default fate of the eye cup is the NR, but synergistic FGF and Wnt signaling promotes CM formation both in vivo and in human retinal organoid. Our study reveals that the vertebrate eye develops through phase transition determined by a combinatorial code of FGF and Wnt signaling. American Association for the Advancement of Science 2021-11-10 /pmc/articles/PMC8580326/ /pubmed/34757798 http://dx.doi.org/10.1126/sciadv.abj9846 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Biomedicine and Life Sciences Balasubramanian, Revathi Min, Xuanyu Quinn, Peter M. J. Giudice, Quentin Lo Tao, Chenqi Polanco, Karina Makrides, Neoklis Peregrin, John Bouaziz, Michael Mao, Yingyu Wang, Qian da Costa, Bruna L. Buenaventura, Diego Wang, Fen Ma, Liang Tsang, Stephen H. Fabre, Pierre J. Zhang, Xin Phase transition specified by a binary code patterns the vertebrate eye cup |
title | Phase transition specified by a binary code patterns the vertebrate eye cup |
title_full | Phase transition specified by a binary code patterns the vertebrate eye cup |
title_fullStr | Phase transition specified by a binary code patterns the vertebrate eye cup |
title_full_unstemmed | Phase transition specified by a binary code patterns the vertebrate eye cup |
title_short | Phase transition specified by a binary code patterns the vertebrate eye cup |
title_sort | phase transition specified by a binary code patterns the vertebrate eye cup |
topic | Biomedicine and Life Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580326/ https://www.ncbi.nlm.nih.gov/pubmed/34757798 http://dx.doi.org/10.1126/sciadv.abj9846 |
work_keys_str_mv | AT balasubramanianrevathi phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT minxuanyu phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT quinnpetermj phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT giudicequentinlo phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT taochenqi phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT polancokarina phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT makridesneoklis phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT peregrinjohn phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT bouazizmichael phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT maoyingyu phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT wangqian phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT dacostabrunal phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT buenaventuradiego phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT wangfen phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT maliang phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT tsangstephenh phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT fabrepierrej phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup AT zhangxin phasetransitionspecifiedbyabinarycodepatternsthevertebrateeyecup |