Cargando…
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
Anomaly detection (AD) aims to distinguish the data points that are inconsistent with the overall pattern of the data. Recently, unsupervised anomaly detection methods have aroused huge attention. Among these methods, feature representation (FR) plays an important role, which can directly affect the...
Autores principales: | Li, Shicheng, Lai, Shumin, Jiang, Yan, Wang, Wenle, Yi, Yugen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580626/ https://www.ncbi.nlm.nih.gov/pubmed/34777492 http://dx.doi.org/10.1155/2021/4026132 |
Ejemplares similares
-
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022) -
Change detection based on unsupervised sparse representation for fundus image pair
por: Fu, Yinghua, et al.
Publicado: (2022) -
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Masked Graph Neural Networks for Unsupervised Anomaly Detection in Multivariate Time Series
por: Xu, Kang, et al.
Publicado: (2023) -
An Unsupervised Deep Hyperspectral Anomaly Detector
por: Ma, Ning, et al.
Publicado: (2018)