Cargando…
ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure
Usually, heart failure occurs when heart-related diseases are developed and continue to deteriorate veins and arteries. Heart failure is the final stage of heart disease, and it has become an important medical problem, particularly among the aging population. In medical diagnosis and treatment, the...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580675/ https://www.ncbi.nlm.nih.gov/pubmed/34777736 http://dx.doi.org/10.1155/2021/5802722 |
_version_ | 1784596651161157632 |
---|---|
author | Chen, Lian Yu, Huiping Huang, Yupeng Jin, Hongyan |
author_facet | Chen, Lian Yu, Huiping Huang, Yupeng Jin, Hongyan |
author_sort | Chen, Lian |
collection | PubMed |
description | Usually, heart failure occurs when heart-related diseases are developed and continue to deteriorate veins and arteries. Heart failure is the final stage of heart disease, and it has become an important medical problem, particularly among the aging population. In medical diagnosis and treatment, the examination of heart failure contains various indicators such as electrocardiogram. It is one of the relatively common ways to collect heart failure or attack related information and is also used as a reference indicator for doctors. Electrocardiogram indicates the potential activity of patient's heart and directly reflects the changes in it. In this paper, a deep learning-based diagnosis system is presented for the early detection of heart failure particularly in elderly patients. For this purpose, we have used two datasets, Physio-Bank and MIMIC-III, which are publicly available, to extract ECG signals and thoroughly examine heart failure. Initially, a heart failure diagnosis model which is based on attention convolutional neural network (CBAM-CNN) is proposed to automatically extract features. Additionally, attention module adaptively learns the characteristics of local features and efficiently extracts the complex features of the ECG signal to perform classification diagnosis. To verify the exceptional performance of the proposed network model, various experiments were carried out in the realistic environment of hospitals. Influence of signal preprocessing on the performance of model is also discussed. These results show that the proposed CBAM-CNN model performance is better for both classifications of ECG signals. Likewise, the CBAM-CNN model is sensitive to noise, and its accuracy is effectively improved as soon as signal is refined. |
format | Online Article Text |
id | pubmed-8580675 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-85806752021-11-11 ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure Chen, Lian Yu, Huiping Huang, Yupeng Jin, Hongyan J Healthc Eng Research Article Usually, heart failure occurs when heart-related diseases are developed and continue to deteriorate veins and arteries. Heart failure is the final stage of heart disease, and it has become an important medical problem, particularly among the aging population. In medical diagnosis and treatment, the examination of heart failure contains various indicators such as electrocardiogram. It is one of the relatively common ways to collect heart failure or attack related information and is also used as a reference indicator for doctors. Electrocardiogram indicates the potential activity of patient's heart and directly reflects the changes in it. In this paper, a deep learning-based diagnosis system is presented for the early detection of heart failure particularly in elderly patients. For this purpose, we have used two datasets, Physio-Bank and MIMIC-III, which are publicly available, to extract ECG signals and thoroughly examine heart failure. Initially, a heart failure diagnosis model which is based on attention convolutional neural network (CBAM-CNN) is proposed to automatically extract features. Additionally, attention module adaptively learns the characteristics of local features and efficiently extracts the complex features of the ECG signal to perform classification diagnosis. To verify the exceptional performance of the proposed network model, various experiments were carried out in the realistic environment of hospitals. Influence of signal preprocessing on the performance of model is also discussed. These results show that the proposed CBAM-CNN model performance is better for both classifications of ECG signals. Likewise, the CBAM-CNN model is sensitive to noise, and its accuracy is effectively improved as soon as signal is refined. Hindawi 2021-11-03 /pmc/articles/PMC8580675/ /pubmed/34777736 http://dx.doi.org/10.1155/2021/5802722 Text en Copyright © 2021 Lian Chen et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chen, Lian Yu, Huiping Huang, Yupeng Jin, Hongyan ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure |
title | ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure |
title_full | ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure |
title_fullStr | ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure |
title_full_unstemmed | ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure |
title_short | ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure |
title_sort | ecg signal-enabled automatic diagnosis technology of heart failure |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580675/ https://www.ncbi.nlm.nih.gov/pubmed/34777736 http://dx.doi.org/10.1155/2021/5802722 |
work_keys_str_mv | AT chenlian ecgsignalenabledautomaticdiagnosistechnologyofheartfailure AT yuhuiping ecgsignalenabledautomaticdiagnosistechnologyofheartfailure AT huangyupeng ecgsignalenabledautomaticdiagnosistechnologyofheartfailure AT jinhongyan ecgsignalenabledautomaticdiagnosistechnologyofheartfailure |