Cargando…
A self-supervised learning strategy for postoperative brain cavity segmentation simulating resections
PURPOSE: Accurate segmentation of brain resection cavities (RCs) aids in postoperative analysis and determining follow-up treatment. Convolutional neural networks (CNNs) are the state-of-the-art image segmentation technique, but require large annotated datasets for training. Annotation of 3D medical...
Autores principales: | Pérez-García, Fernando, Dorent, Reuben, Rizzi, Michele, Cardinale, Francesco, Frazzini, Valerio, Navarro, Vincent, Essert, Caroline, Ollivier, Irène, Vercauteren, Tom, Sparks, Rachel, Duncan, John S., Ourselin, Sébastien |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580910/ https://www.ncbi.nlm.nih.gov/pubmed/34120269 http://dx.doi.org/10.1007/s11548-021-02420-2 |
Ejemplares similares
-
Manual segmentation versus semi-automated segmentation for quantifying vestibular schwannoma volume on MRI
por: McGrath, Hari, et al.
Publicado: (2020) -
Learning joint segmentation of tissues and brain lesions from task-specific hetero-modal domain-shifted datasets
por: Dorent, Reuben, et al.
Publicado: (2021) -
Comparison of interactive and automatic segmentation of stereoelectroencephalography electrodes on computed tomography post-operative images: preliminary results
por: Benadi, Sahar, et al.
Publicado: (2018) -
Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm
por: Shapey, Jonathan, et al.
Publicado: (2021) -
Automated Koos Classification of Vestibular Schwannoma
por: Kujawa, Aaron, et al.
Publicado: (2022)