Cargando…
Fusion of apoptosis‐related protein Cytochrome c with anti‐HER‐2 single‐chain antibody targets the suppression of HER‐2+ breast cancer
Cancer treatment has gradually developed from toxic chemotherapy to targeted therapy with fewer side effects. Approximately 30% of breast cancer patients overexpress human epidermal growth factor receptor 2 (HER‐2). Previous studies have successfully produced single‐chain antibodies (scFv) targeting...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581304/ https://www.ncbi.nlm.nih.gov/pubmed/34697906 http://dx.doi.org/10.1111/jcmm.17001 |
_version_ | 1784596777671852032 |
---|---|
author | Lu, DanDan Guo, YiChen Hu, YunFeng Wang, Min Li, Chen Gangrade, Abhishek Chen, JiaHui Zheng, ZiHui Guo, Jun |
author_facet | Lu, DanDan Guo, YiChen Hu, YunFeng Wang, Min Li, Chen Gangrade, Abhishek Chen, JiaHui Zheng, ZiHui Guo, Jun |
author_sort | Lu, DanDan |
collection | PubMed |
description | Cancer treatment has gradually developed from toxic chemotherapy to targeted therapy with fewer side effects. Approximately 30% of breast cancer patients overexpress human epidermal growth factor receptor 2 (HER‐2). Previous studies have successfully produced single‐chain antibodies (scFv) targeting HER‐2+ breast cancer; however, scFv have poor stability, easy aggregation and a shorter half‐life, which have no significant effect on targeting therapy. Moreover, scFv has been considered as a drug delivery platform that can kill target cells by effector molecules. However, the functional killing domains of immunotoxins are mainly derived from plant or bacterial toxins, which have a large molecular weight, low tissue permeability and severe side effects. To address these concerns, we designed several apoptotic immune molecules to replace exogenous toxins using endogenous apoptosis‐related protein DNA fragmentation factor 40 (DFF40) and tandem‐repeat Cytochrome c base on caspase‐3 responsive peptide (DEVD). Our results suggest that DFF40 or Cytc fusion scFv specifically targets HER‐2 overexpressing breast cancer cells (SK‐BR‐3 and BT‐474) rather than HER‐2 negative cells (MDA‐MB‐231 and MCF‐7). Following cellular internalization, apoptosis‐related proteins inhibited tumour activity by initiating endogenous apoptosis pathways, which significantly reduced immunogenicity and toxic side effects. Therefore, we suggest that immunoapoptotic molecules may become potential drugs for targeted immunotherapy of breast cancer. |
format | Online Article Text |
id | pubmed-8581304 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85813042021-11-17 Fusion of apoptosis‐related protein Cytochrome c with anti‐HER‐2 single‐chain antibody targets the suppression of HER‐2+ breast cancer Lu, DanDan Guo, YiChen Hu, YunFeng Wang, Min Li, Chen Gangrade, Abhishek Chen, JiaHui Zheng, ZiHui Guo, Jun J Cell Mol Med Original Articles Cancer treatment has gradually developed from toxic chemotherapy to targeted therapy with fewer side effects. Approximately 30% of breast cancer patients overexpress human epidermal growth factor receptor 2 (HER‐2). Previous studies have successfully produced single‐chain antibodies (scFv) targeting HER‐2+ breast cancer; however, scFv have poor stability, easy aggregation and a shorter half‐life, which have no significant effect on targeting therapy. Moreover, scFv has been considered as a drug delivery platform that can kill target cells by effector molecules. However, the functional killing domains of immunotoxins are mainly derived from plant or bacterial toxins, which have a large molecular weight, low tissue permeability and severe side effects. To address these concerns, we designed several apoptotic immune molecules to replace exogenous toxins using endogenous apoptosis‐related protein DNA fragmentation factor 40 (DFF40) and tandem‐repeat Cytochrome c base on caspase‐3 responsive peptide (DEVD). Our results suggest that DFF40 or Cytc fusion scFv specifically targets HER‐2 overexpressing breast cancer cells (SK‐BR‐3 and BT‐474) rather than HER‐2 negative cells (MDA‐MB‐231 and MCF‐7). Following cellular internalization, apoptosis‐related proteins inhibited tumour activity by initiating endogenous apoptosis pathways, which significantly reduced immunogenicity and toxic side effects. Therefore, we suggest that immunoapoptotic molecules may become potential drugs for targeted immunotherapy of breast cancer. John Wiley and Sons Inc. 2021-10-25 2021-11 /pmc/articles/PMC8581304/ /pubmed/34697906 http://dx.doi.org/10.1111/jcmm.17001 Text en © 2021 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Lu, DanDan Guo, YiChen Hu, YunFeng Wang, Min Li, Chen Gangrade, Abhishek Chen, JiaHui Zheng, ZiHui Guo, Jun Fusion of apoptosis‐related protein Cytochrome c with anti‐HER‐2 single‐chain antibody targets the suppression of HER‐2+ breast cancer |
title | Fusion of apoptosis‐related protein Cytochrome c with anti‐HER‐2 single‐chain antibody targets the suppression of HER‐2+ breast cancer |
title_full | Fusion of apoptosis‐related protein Cytochrome c with anti‐HER‐2 single‐chain antibody targets the suppression of HER‐2+ breast cancer |
title_fullStr | Fusion of apoptosis‐related protein Cytochrome c with anti‐HER‐2 single‐chain antibody targets the suppression of HER‐2+ breast cancer |
title_full_unstemmed | Fusion of apoptosis‐related protein Cytochrome c with anti‐HER‐2 single‐chain antibody targets the suppression of HER‐2+ breast cancer |
title_short | Fusion of apoptosis‐related protein Cytochrome c with anti‐HER‐2 single‐chain antibody targets the suppression of HER‐2+ breast cancer |
title_sort | fusion of apoptosis‐related protein cytochrome c with anti‐her‐2 single‐chain antibody targets the suppression of her‐2+ breast cancer |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8581304/ https://www.ncbi.nlm.nih.gov/pubmed/34697906 http://dx.doi.org/10.1111/jcmm.17001 |
work_keys_str_mv | AT ludandan fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer AT guoyichen fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer AT huyunfeng fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer AT wangmin fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer AT lichen fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer AT gangradeabhishek fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer AT chenjiahui fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer AT zhengzihui fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer AT guojun fusionofapoptosisrelatedproteincytochromecwithantiher2singlechainantibodytargetsthesuppressionofher2breastcancer |