Cargando…
Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater
[Image: see text] Active constituents of Chinese yam peel (CYPE), namely, diosgenin (DOG), batatasin-I (BTS-I), batatasin-III (BTS-III), and yam polysaccharide (Y-PS), were extracted via an ultrasonic soaking strategy. The synergetic anticorrosion mechanism among these compounds for copper in artifi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582072/ https://www.ncbi.nlm.nih.gov/pubmed/34778668 http://dx.doi.org/10.1021/acsomega.1c04500 |
_version_ | 1784596908251021312 |
---|---|
author | Li, Dejin Zhao, Xiaoqi Liu, Zining Liu, Hao Fan, Baomin Yang, Biao Zheng, Xingwen Li, Wenzhuo Zou, Huijian |
author_facet | Li, Dejin Zhao, Xiaoqi Liu, Zining Liu, Hao Fan, Baomin Yang, Biao Zheng, Xingwen Li, Wenzhuo Zou, Huijian |
author_sort | Li, Dejin |
collection | PubMed |
description | [Image: see text] Active constituents of Chinese yam peel (CYPE), namely, diosgenin (DOG), batatasin-I (BTS-I), batatasin-III (BTS-III), and yam polysaccharide (Y-PS), were extracted via an ultrasonic soaking strategy. The synergetic anticorrosion mechanism among these compounds for copper in artificial seawater (ASW) was clarified by gravimetric measurements, electrochemical evaluations, surface analyses, quantum chemical calculations under a dominant solvent model, and molecular dynamics (MD) simulations. The results of weight loss revealed that CYPE strongly inhibited the corrosion of copper in ASW, and the elevating temperature boosted the anticorrosion efficacy of CYPE. The inhibition efficiency could attain 96.33% with 900 mg/L CYPE in ASW at 298 K due to effective adsorption. CYPE simultaneously suppressed the anodic and cathodic reactions for copper in ASW, which could be categorized as the mixed-type corrosion inhibitor with the predominant anodic effect. Similar electrochemical kinetics was evidenced by electrochemical frequency modulation (EFM). Electrochemical impedance spectroscopy (EIS) indicated that CYPE prominently increased the charge-transfer resistance at the copper/electrolyte interface without altering the corrosion mechanism. Extending the immersion time was also conducive for CYPE to further minimize the corrosion of copper in ASW, which was demonstrated by the time-course polarization, EIS, and EFM tests. Owing to the adsorption of CYPE, the copper surface was well-protected and showed reduced wettability and limited variation of roughness. From the outcomes of quantum chemical calculations, global and local reactive descriptors of DOG implied the cross-linked deposition of actually formed dioscin on the copper surface; otherwise, those of BTS-I/-III showed the propensity for parallel adsorption, which could chemically anchor on the voids uncovered by dioscin and thereby synergistically inhibit the corrosion process. The adsorption orientations of DOG, BTS-I, and BTS-III were also consolidated by MD simulations. The findings of this study might be beneficial to inspire the development of eco-friendly corrosion inhibitors from plant wastes for copper in marine environments. |
format | Online Article Text |
id | pubmed-8582072 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-85820722021-11-12 Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater Li, Dejin Zhao, Xiaoqi Liu, Zining Liu, Hao Fan, Baomin Yang, Biao Zheng, Xingwen Li, Wenzhuo Zou, Huijian ACS Omega [Image: see text] Active constituents of Chinese yam peel (CYPE), namely, diosgenin (DOG), batatasin-I (BTS-I), batatasin-III (BTS-III), and yam polysaccharide (Y-PS), were extracted via an ultrasonic soaking strategy. The synergetic anticorrosion mechanism among these compounds for copper in artificial seawater (ASW) was clarified by gravimetric measurements, electrochemical evaluations, surface analyses, quantum chemical calculations under a dominant solvent model, and molecular dynamics (MD) simulations. The results of weight loss revealed that CYPE strongly inhibited the corrosion of copper in ASW, and the elevating temperature boosted the anticorrosion efficacy of CYPE. The inhibition efficiency could attain 96.33% with 900 mg/L CYPE in ASW at 298 K due to effective adsorption. CYPE simultaneously suppressed the anodic and cathodic reactions for copper in ASW, which could be categorized as the mixed-type corrosion inhibitor with the predominant anodic effect. Similar electrochemical kinetics was evidenced by electrochemical frequency modulation (EFM). Electrochemical impedance spectroscopy (EIS) indicated that CYPE prominently increased the charge-transfer resistance at the copper/electrolyte interface without altering the corrosion mechanism. Extending the immersion time was also conducive for CYPE to further minimize the corrosion of copper in ASW, which was demonstrated by the time-course polarization, EIS, and EFM tests. Owing to the adsorption of CYPE, the copper surface was well-protected and showed reduced wettability and limited variation of roughness. From the outcomes of quantum chemical calculations, global and local reactive descriptors of DOG implied the cross-linked deposition of actually formed dioscin on the copper surface; otherwise, those of BTS-I/-III showed the propensity for parallel adsorption, which could chemically anchor on the voids uncovered by dioscin and thereby synergistically inhibit the corrosion process. The adsorption orientations of DOG, BTS-I, and BTS-III were also consolidated by MD simulations. The findings of this study might be beneficial to inspire the development of eco-friendly corrosion inhibitors from plant wastes for copper in marine environments. American Chemical Society 2021-10-25 /pmc/articles/PMC8582072/ /pubmed/34778668 http://dx.doi.org/10.1021/acsomega.1c04500 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Li, Dejin Zhao, Xiaoqi Liu, Zining Liu, Hao Fan, Baomin Yang, Biao Zheng, Xingwen Li, Wenzhuo Zou, Huijian Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater |
title | Synergetic Anticorrosion Mechanism of Main Constituents
in Chinese Yam Peel for Copper in Artificial Seawater |
title_full | Synergetic Anticorrosion Mechanism of Main Constituents
in Chinese Yam Peel for Copper in Artificial Seawater |
title_fullStr | Synergetic Anticorrosion Mechanism of Main Constituents
in Chinese Yam Peel for Copper in Artificial Seawater |
title_full_unstemmed | Synergetic Anticorrosion Mechanism of Main Constituents
in Chinese Yam Peel for Copper in Artificial Seawater |
title_short | Synergetic Anticorrosion Mechanism of Main Constituents
in Chinese Yam Peel for Copper in Artificial Seawater |
title_sort | synergetic anticorrosion mechanism of main constituents
in chinese yam peel for copper in artificial seawater |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582072/ https://www.ncbi.nlm.nih.gov/pubmed/34778668 http://dx.doi.org/10.1021/acsomega.1c04500 |
work_keys_str_mv | AT lidejin synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater AT zhaoxiaoqi synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater AT liuzining synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater AT liuhao synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater AT fanbaomin synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater AT yangbiao synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater AT zhengxingwen synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater AT liwenzhuo synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater AT zouhuijian synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater |