Cargando…

Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater

[Image: see text] Active constituents of Chinese yam peel (CYPE), namely, diosgenin (DOG), batatasin-I (BTS-I), batatasin-III (BTS-III), and yam polysaccharide (Y-PS), were extracted via an ultrasonic soaking strategy. The synergetic anticorrosion mechanism among these compounds for copper in artifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Dejin, Zhao, Xiaoqi, Liu, Zining, Liu, Hao, Fan, Baomin, Yang, Biao, Zheng, Xingwen, Li, Wenzhuo, Zou, Huijian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582072/
https://www.ncbi.nlm.nih.gov/pubmed/34778668
http://dx.doi.org/10.1021/acsomega.1c04500
_version_ 1784596908251021312
author Li, Dejin
Zhao, Xiaoqi
Liu, Zining
Liu, Hao
Fan, Baomin
Yang, Biao
Zheng, Xingwen
Li, Wenzhuo
Zou, Huijian
author_facet Li, Dejin
Zhao, Xiaoqi
Liu, Zining
Liu, Hao
Fan, Baomin
Yang, Biao
Zheng, Xingwen
Li, Wenzhuo
Zou, Huijian
author_sort Li, Dejin
collection PubMed
description [Image: see text] Active constituents of Chinese yam peel (CYPE), namely, diosgenin (DOG), batatasin-I (BTS-I), batatasin-III (BTS-III), and yam polysaccharide (Y-PS), were extracted via an ultrasonic soaking strategy. The synergetic anticorrosion mechanism among these compounds for copper in artificial seawater (ASW) was clarified by gravimetric measurements, electrochemical evaluations, surface analyses, quantum chemical calculations under a dominant solvent model, and molecular dynamics (MD) simulations. The results of weight loss revealed that CYPE strongly inhibited the corrosion of copper in ASW, and the elevating temperature boosted the anticorrosion efficacy of CYPE. The inhibition efficiency could attain 96.33% with 900 mg/L CYPE in ASW at 298 K due to effective adsorption. CYPE simultaneously suppressed the anodic and cathodic reactions for copper in ASW, which could be categorized as the mixed-type corrosion inhibitor with the predominant anodic effect. Similar electrochemical kinetics was evidenced by electrochemical frequency modulation (EFM). Electrochemical impedance spectroscopy (EIS) indicated that CYPE prominently increased the charge-transfer resistance at the copper/electrolyte interface without altering the corrosion mechanism. Extending the immersion time was also conducive for CYPE to further minimize the corrosion of copper in ASW, which was demonstrated by the time-course polarization, EIS, and EFM tests. Owing to the adsorption of CYPE, the copper surface was well-protected and showed reduced wettability and limited variation of roughness. From the outcomes of quantum chemical calculations, global and local reactive descriptors of DOG implied the cross-linked deposition of actually formed dioscin on the copper surface; otherwise, those of BTS-I/-III showed the propensity for parallel adsorption, which could chemically anchor on the voids uncovered by dioscin and thereby synergistically inhibit the corrosion process. The adsorption orientations of DOG, BTS-I, and BTS-III were also consolidated by MD simulations. The findings of this study might be beneficial to inspire the development of eco-friendly corrosion inhibitors from plant wastes for copper in marine environments.
format Online
Article
Text
id pubmed-8582072
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-85820722021-11-12 Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater Li, Dejin Zhao, Xiaoqi Liu, Zining Liu, Hao Fan, Baomin Yang, Biao Zheng, Xingwen Li, Wenzhuo Zou, Huijian ACS Omega [Image: see text] Active constituents of Chinese yam peel (CYPE), namely, diosgenin (DOG), batatasin-I (BTS-I), batatasin-III (BTS-III), and yam polysaccharide (Y-PS), were extracted via an ultrasonic soaking strategy. The synergetic anticorrosion mechanism among these compounds for copper in artificial seawater (ASW) was clarified by gravimetric measurements, electrochemical evaluations, surface analyses, quantum chemical calculations under a dominant solvent model, and molecular dynamics (MD) simulations. The results of weight loss revealed that CYPE strongly inhibited the corrosion of copper in ASW, and the elevating temperature boosted the anticorrosion efficacy of CYPE. The inhibition efficiency could attain 96.33% with 900 mg/L CYPE in ASW at 298 K due to effective adsorption. CYPE simultaneously suppressed the anodic and cathodic reactions for copper in ASW, which could be categorized as the mixed-type corrosion inhibitor with the predominant anodic effect. Similar electrochemical kinetics was evidenced by electrochemical frequency modulation (EFM). Electrochemical impedance spectroscopy (EIS) indicated that CYPE prominently increased the charge-transfer resistance at the copper/electrolyte interface without altering the corrosion mechanism. Extending the immersion time was also conducive for CYPE to further minimize the corrosion of copper in ASW, which was demonstrated by the time-course polarization, EIS, and EFM tests. Owing to the adsorption of CYPE, the copper surface was well-protected and showed reduced wettability and limited variation of roughness. From the outcomes of quantum chemical calculations, global and local reactive descriptors of DOG implied the cross-linked deposition of actually formed dioscin on the copper surface; otherwise, those of BTS-I/-III showed the propensity for parallel adsorption, which could chemically anchor on the voids uncovered by dioscin and thereby synergistically inhibit the corrosion process. The adsorption orientations of DOG, BTS-I, and BTS-III were also consolidated by MD simulations. The findings of this study might be beneficial to inspire the development of eco-friendly corrosion inhibitors from plant wastes for copper in marine environments. American Chemical Society 2021-10-25 /pmc/articles/PMC8582072/ /pubmed/34778668 http://dx.doi.org/10.1021/acsomega.1c04500 Text en © 2021 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Li, Dejin
Zhao, Xiaoqi
Liu, Zining
Liu, Hao
Fan, Baomin
Yang, Biao
Zheng, Xingwen
Li, Wenzhuo
Zou, Huijian
Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater
title Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater
title_full Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater
title_fullStr Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater
title_full_unstemmed Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater
title_short Synergetic Anticorrosion Mechanism of Main Constituents in Chinese Yam Peel for Copper in Artificial Seawater
title_sort synergetic anticorrosion mechanism of main constituents in chinese yam peel for copper in artificial seawater
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582072/
https://www.ncbi.nlm.nih.gov/pubmed/34778668
http://dx.doi.org/10.1021/acsomega.1c04500
work_keys_str_mv AT lidejin synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater
AT zhaoxiaoqi synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater
AT liuzining synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater
AT liuhao synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater
AT fanbaomin synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater
AT yangbiao synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater
AT zhengxingwen synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater
AT liwenzhuo synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater
AT zouhuijian synergeticanticorrosionmechanismofmainconstituentsinchineseyampeelforcopperinartificialseawater