Cargando…
Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces
The recent pandemic triggered numerous societal efforts aimed to control and limit the spread of SARS-CoV-2. One of these aspects is related on how the virion interacts with inanimate surfaces, which might be the source of secondary infection. Although recent works address the adsorption of the spik...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582103/ https://www.ncbi.nlm.nih.gov/pubmed/34785982 http://dx.doi.org/10.1016/j.seppur.2021.120125 |
_version_ | 1784596915496681472 |
---|---|
author | De Luca, Giorgio Petrosino, Francesco Di Salvo, Javier Luque Chakraborty, Sudip Curcio, Stefano |
author_facet | De Luca, Giorgio Petrosino, Francesco Di Salvo, Javier Luque Chakraborty, Sudip Curcio, Stefano |
author_sort | De Luca, Giorgio |
collection | PubMed |
description | The recent pandemic triggered numerous societal efforts aimed to control and limit the spread of SARS-CoV-2. One of these aspects is related on how the virion interacts with inanimate surfaces, which might be the source of secondary infection. Although recent works address the adsorption of the spike protein on surfaces, there is no information concerning the long-range interactions between spike and surfaces, experimented by the virion when is dispersed in the droplet before its possible adsorption. Some descriptors, namely the interaction potentials per single protein and global potentials, were calculated in this work. These descriptors, evaluated for the closed and open states of the spike protein, are correlated to the long-range noncovalent interactions between the SARS-CoV-2 spikes and polymeric surfaces. They are associated with the surface's affinity towards SARS-CoV-2 dispersed in respiratory droplets or water solutions. Molecular-Dynamics simulations were performed to model the surface of three synthetic polymeric materials: Polypropylene (PP), Polyethylene Terephthalate (PET), and Polylactic Acid (PLA), used in Molecular Mechanics simulations to define the above potentials. The descriptors show a similar trend for the three surfaces, highlighting a greater affinity towards the spikes of PP and PLA over PET. For closed and open structures, the long-range interactions with the surfaces decreased in the following order PP ∼ PLA > PET and PLA > PP > PET, respectively. Thus, PLA and PP interact with the virion quite distant from these surfaces to a greater extent concerning the PET surface, however, the differences among the considered surfaces were small. The global potentials show that the long-range interactions are weak compared to classic binding energy of covalent or ionic bonds. The proposed descriptors are useful most of all for a comparative study aimed at quickly preliminary screening of polymeric surfaces. The obtained results should be validated by more accurate method which will be subject of a subsequent work. |
format | Online Article Text |
id | pubmed-8582103 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier B.V. |
record_format | MEDLINE/PubMed |
spelling | pubmed-85821032021-11-12 Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces De Luca, Giorgio Petrosino, Francesco Di Salvo, Javier Luque Chakraborty, Sudip Curcio, Stefano Sep Purif Technol Article The recent pandemic triggered numerous societal efforts aimed to control and limit the spread of SARS-CoV-2. One of these aspects is related on how the virion interacts with inanimate surfaces, which might be the source of secondary infection. Although recent works address the adsorption of the spike protein on surfaces, there is no information concerning the long-range interactions between spike and surfaces, experimented by the virion when is dispersed in the droplet before its possible adsorption. Some descriptors, namely the interaction potentials per single protein and global potentials, were calculated in this work. These descriptors, evaluated for the closed and open states of the spike protein, are correlated to the long-range noncovalent interactions between the SARS-CoV-2 spikes and polymeric surfaces. They are associated with the surface's affinity towards SARS-CoV-2 dispersed in respiratory droplets or water solutions. Molecular-Dynamics simulations were performed to model the surface of three synthetic polymeric materials: Polypropylene (PP), Polyethylene Terephthalate (PET), and Polylactic Acid (PLA), used in Molecular Mechanics simulations to define the above potentials. The descriptors show a similar trend for the three surfaces, highlighting a greater affinity towards the spikes of PP and PLA over PET. For closed and open structures, the long-range interactions with the surfaces decreased in the following order PP ∼ PLA > PET and PLA > PP > PET, respectively. Thus, PLA and PP interact with the virion quite distant from these surfaces to a greater extent concerning the PET surface, however, the differences among the considered surfaces were small. The global potentials show that the long-range interactions are weak compared to classic binding energy of covalent or ionic bonds. The proposed descriptors are useful most of all for a comparative study aimed at quickly preliminary screening of polymeric surfaces. The obtained results should be validated by more accurate method which will be subject of a subsequent work. Elsevier B.V. 2022-02-01 2021-11-11 /pmc/articles/PMC8582103/ /pubmed/34785982 http://dx.doi.org/10.1016/j.seppur.2021.120125 Text en © 2021 Elsevier B.V. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article De Luca, Giorgio Petrosino, Francesco Di Salvo, Javier Luque Chakraborty, Sudip Curcio, Stefano Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces |
title | Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces |
title_full | Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces |
title_fullStr | Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces |
title_full_unstemmed | Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces |
title_short | Advanced descriptors for long-range noncovalent interactions between SARS-CoV-2 spikes and polymer surfaces |
title_sort | advanced descriptors for long-range noncovalent interactions between sars-cov-2 spikes and polymer surfaces |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582103/ https://www.ncbi.nlm.nih.gov/pubmed/34785982 http://dx.doi.org/10.1016/j.seppur.2021.120125 |
work_keys_str_mv | AT delucagiorgio advanceddescriptorsforlongrangenoncovalentinteractionsbetweensarscov2spikesandpolymersurfaces AT petrosinofrancesco advanceddescriptorsforlongrangenoncovalentinteractionsbetweensarscov2spikesandpolymersurfaces AT disalvojavierluque advanceddescriptorsforlongrangenoncovalentinteractionsbetweensarscov2spikesandpolymersurfaces AT chakrabortysudip advanceddescriptorsforlongrangenoncovalentinteractionsbetweensarscov2spikesandpolymersurfaces AT curciostefano advanceddescriptorsforlongrangenoncovalentinteractionsbetweensarscov2spikesandpolymersurfaces |