Cargando…
Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm
BACKGROUND: Sand is often considered the preferred bedding material for dairy cows as it is thought to have lower bacterial counts than organic bedding materials and cows bedded on sand experience fewer cases of lameness and disease. Sand can also be efficiently recycled and reused, making it cost-e...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582206/ https://www.ncbi.nlm.nih.gov/pubmed/34758888 http://dx.doi.org/10.1186/s40104-021-00635-6 |
_version_ | 1784596935824375808 |
---|---|
author | Pilch, Hannah E. Steinberger, Andrew J. Sockett, Donald C. Aulik, Nicole Suen, Garret Czuprynski, Charles J. |
author_facet | Pilch, Hannah E. Steinberger, Andrew J. Sockett, Donald C. Aulik, Nicole Suen, Garret Czuprynski, Charles J. |
author_sort | Pilch, Hannah E. |
collection | PubMed |
description | BACKGROUND: Sand is often considered the preferred bedding material for dairy cows as it is thought to have lower bacterial counts than organic bedding materials and cows bedded on sand experience fewer cases of lameness and disease. Sand can also be efficiently recycled and reused, making it cost-effective. However, some studies have suggested that the residual organic material present in recycled sand can serve as a reservoir for commensal and pathogenic bacteria, although no studies have yet characterized the total bacterial community composition. Here we sought to characterize the bacterial community composition of a Wisconsin dairy farm bedding sand recycling system and its dynamics across several stages of the recycling process during both summer and winter using 16S rRNA gene amplicon sequencing. RESULTS: Bacterial community compositions of the sand recycling system differed by both seasons and stage. Summer samples had higher richness and distinct community compositions, relative to winter samples. In both summer and winter samples, the diversity of recycled sand decreased with time drying in the recycling room. Compositionally, summer sand 14 d post-recycling was enriched in operational taxonomic units (OTUs) belonging to the genera Acinetobacter and Pseudomonas, relative to freshly washed sand and sand from cow pens. In contrast, no OTUs were found to be enriched in winter sand. The sand recycling system contained an overall core microbiota of 141 OTUs representing 68.45% ± 10.33% SD of the total bacterial relative abundance at each sampled stage. The 4 most abundant genera in this core microbiota included Acinetobacter, Psychrobacter, Corynebacterium, and Pseudomonas. Acinetobacter was present in greater abundance in summer samples, whereas Psychrobacter and Corynebacterium had higher relative abundances in winter samples. Pseudomonas had consistent relative abundances across both seasons. CONCLUSIONS: These findings highlight the potential of recycled bedding sand as a bacterial reservoir that warrants further study. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40104-021-00635-6. |
format | Online Article Text |
id | pubmed-8582206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-85822062021-11-15 Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm Pilch, Hannah E. Steinberger, Andrew J. Sockett, Donald C. Aulik, Nicole Suen, Garret Czuprynski, Charles J. J Anim Sci Biotechnol Research BACKGROUND: Sand is often considered the preferred bedding material for dairy cows as it is thought to have lower bacterial counts than organic bedding materials and cows bedded on sand experience fewer cases of lameness and disease. Sand can also be efficiently recycled and reused, making it cost-effective. However, some studies have suggested that the residual organic material present in recycled sand can serve as a reservoir for commensal and pathogenic bacteria, although no studies have yet characterized the total bacterial community composition. Here we sought to characterize the bacterial community composition of a Wisconsin dairy farm bedding sand recycling system and its dynamics across several stages of the recycling process during both summer and winter using 16S rRNA gene amplicon sequencing. RESULTS: Bacterial community compositions of the sand recycling system differed by both seasons and stage. Summer samples had higher richness and distinct community compositions, relative to winter samples. In both summer and winter samples, the diversity of recycled sand decreased with time drying in the recycling room. Compositionally, summer sand 14 d post-recycling was enriched in operational taxonomic units (OTUs) belonging to the genera Acinetobacter and Pseudomonas, relative to freshly washed sand and sand from cow pens. In contrast, no OTUs were found to be enriched in winter sand. The sand recycling system contained an overall core microbiota of 141 OTUs representing 68.45% ± 10.33% SD of the total bacterial relative abundance at each sampled stage. The 4 most abundant genera in this core microbiota included Acinetobacter, Psychrobacter, Corynebacterium, and Pseudomonas. Acinetobacter was present in greater abundance in summer samples, whereas Psychrobacter and Corynebacterium had higher relative abundances in winter samples. Pseudomonas had consistent relative abundances across both seasons. CONCLUSIONS: These findings highlight the potential of recycled bedding sand as a bacterial reservoir that warrants further study. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40104-021-00635-6. BioMed Central 2021-11-11 /pmc/articles/PMC8582206/ /pubmed/34758888 http://dx.doi.org/10.1186/s40104-021-00635-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Pilch, Hannah E. Steinberger, Andrew J. Sockett, Donald C. Aulik, Nicole Suen, Garret Czuprynski, Charles J. Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm |
title | Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm |
title_full | Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm |
title_fullStr | Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm |
title_full_unstemmed | Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm |
title_short | Assessing the microbiota of recycled bedding sand on a Wisconsin dairy farm |
title_sort | assessing the microbiota of recycled bedding sand on a wisconsin dairy farm |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582206/ https://www.ncbi.nlm.nih.gov/pubmed/34758888 http://dx.doi.org/10.1186/s40104-021-00635-6 |
work_keys_str_mv | AT pilchhannahe assessingthemicrobiotaofrecycledbeddingsandonawisconsindairyfarm AT steinbergerandrewj assessingthemicrobiotaofrecycledbeddingsandonawisconsindairyfarm AT sockettdonaldc assessingthemicrobiotaofrecycledbeddingsandonawisconsindairyfarm AT auliknicole assessingthemicrobiotaofrecycledbeddingsandonawisconsindairyfarm AT suengarret assessingthemicrobiotaofrecycledbeddingsandonawisconsindairyfarm AT czuprynskicharlesj assessingthemicrobiotaofrecycledbeddingsandonawisconsindairyfarm |