Cargando…
Learning Electron Densities in the Condensed Phase
[Image: see text] We introduce a local machine-learning method for predicting the electron densities of periodic systems. The framework is based on a numerical, atom-centered auxiliary basis, which enables an accurate expansion of the all-electron density in a form suitable for learning isolated and...
Autores principales: | Lewis, Alan M., Grisafi, Andrea, Ceriotti, Michele, Rossi, Mariana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582255/ https://www.ncbi.nlm.nih.gov/pubmed/34669406 http://dx.doi.org/10.1021/acs.jctc.1c00576 |
Ejemplares similares
-
Electron density learning of non-covalent systems
por: Fabrizio, Alberto, et al.
Publicado: (2019) -
Transferable Machine-Learning Model of the Electron
Density
por: Grisafi, Andrea, et al.
Publicado: (2018) -
Multi-scale approach for the prediction of atomic scale properties
por: Grisafi, Andrea, et al.
Publicado: (2020) -
Electron correlation in molecules and condensed phases
por: March, N H
Publicado: (1996) -
Quantum mechanical static dipole polarizabilities in the QM7b and AlphaML showcase databases
por: Yang, Yang, et al.
Publicado: (2019)