Cargando…
Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas
SIMPLE SUMMARY: Low-grade gliomas (LGG) with the 1p/19q co-deletion mutation have been proven to have a better survival prognosis and response to treatment than individuals without the mutation. Identifying this mutation has a vital role in managing LGG patients; however, the current diagnostic gold...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582370/ https://www.ncbi.nlm.nih.gov/pubmed/34771562 http://dx.doi.org/10.3390/cancers13215398 |
Sumario: | SIMPLE SUMMARY: Low-grade gliomas (LGG) with the 1p/19q co-deletion mutation have been proven to have a better survival prognosis and response to treatment than individuals without the mutation. Identifying this mutation has a vital role in managing LGG patients; however, the current diagnostic gold standard, including the brain-tissue biopsy or the surgical resection of the tumor, remains highly invasive and time-consuming. We proposed a model based on the eXtreme Gradient Boosting (XGBoost) classifier to detect 1p/19q co-deletion mutation using non-invasive medical images. The performance of our model achieved 87% and 82.8% accuracy on the training and external test set, respectively. Significantly, the prediction was based on only seven optimal wavelet radiomics features extracted from brain Magnetic Resonance (MR) images. We believe that this model can address clinicians in the rapid diagnosis of clinical 1p/19q co-deletion mutation, thereby improving the treatment prognosis of LGG patients. ABSTRACT: The prognosis and treatment plans for patients diagnosed with low-grade gliomas (LGGs) may significantly be improved if there is evidence of chromosome 1p/19q co-deletion mutation. Many studies proved that the codeletion status of 1p/19q enhances the sensitivity of the tumor to different types of therapeutics. However, the current clinical gold standard of detecting this chromosomal mutation remains invasive and poses implicit risks to patients. Radiomics features derived from medical images have been used as a new approach for non-invasive diagnosis and clinical decisions. This study proposed an eXtreme Gradient Boosting (XGBoost)-based model to predict the 1p/19q codeletion status in a binary classification task. We trained our model on the public database extracted from The Cancer Imaging Archive (TCIA), including 159 LGG patients with 1p/19q co-deletion mutation status. The XGBoost was the baseline algorithm, and we combined the SHapley Additive exPlanations (SHAP) analysis to select the seven most optimal radiomics features to build the final predictive model. Our final model achieved an accuracy of 87% and 82.8% on the training set and external test set, respectively. With seven wavelet radiomics features, our XGBoost-based model can identify the 1p/19q codeletion status in LGG-diagnosed patients for better management and address the drawbacks of invasive gold-standard tests in clinical practice. |
---|