Cargando…
Development and Validation of an Efficient MRI Radiomics Signature for Improving the Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas
SIMPLE SUMMARY: Low-grade gliomas (LGG) with the 1p/19q co-deletion mutation have been proven to have a better survival prognosis and response to treatment than individuals without the mutation. Identifying this mutation has a vital role in managing LGG patients; however, the current diagnostic gold...
Autores principales: | Kha, Quang-Hien, Le, Viet-Huan, Hung, Truong Nguyen Khanh, Le, Nguyen Quoc Khanh |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582370/ https://www.ncbi.nlm.nih.gov/pubmed/34771562 http://dx.doi.org/10.3390/cancers13215398 |
Ejemplares similares
-
Risk Score Generated from CT-Based Radiomics Signatures for Overall Survival Prediction in Non-Small Cell Lung Cancer
por: Le, Viet-Huan, et al.
Publicado: (2021) -
Development and Validation of an Explainable Machine Learning-Based Prediction Model for Drug–Food Interactions from Chemical Structures
por: Kha, Quang-Hien, et al.
Publicado: (2023) -
Machine Learning-Based Radiomics Signatures for EGFR and KRAS Mutations Prediction in Non-Small-Cell Lung Cancer
por: Le, Nguyen Quoc Khanh, et al.
Publicado: (2021) -
A Radiomics-Based Machine Learning Model for Prediction of Tumor Mutational Burden in Lower-Grade Gliomas
por: Lam, Luu Ho Thanh, et al.
Publicado: (2022) -
Identifying SNARE
Proteins Using an Alignment-Free
Method Based on Multiscan Convolutional Neural Network and PSSM Profiles
por: Kha, Quang-Hien, et al.
Publicado: (2022)