Cargando…
Breast Invasive Ductal Carcinoma Classification on Whole Slide Images with Weakly-Supervised and Transfer Learning
SIMPLE SUMMARY: In this study, we have trained deep learning models using transfer learning and weakly-supervised learning for the classification of breast invasive ductal carcinoma (IDC) in whole slide images (WSIs). We evaluated the models on four test sets: one biopsy (n = 522) and three surgical...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582388/ https://www.ncbi.nlm.nih.gov/pubmed/34771530 http://dx.doi.org/10.3390/cancers13215368 |
Sumario: | SIMPLE SUMMARY: In this study, we have trained deep learning models using transfer learning and weakly-supervised learning for the classification of breast invasive ductal carcinoma (IDC) in whole slide images (WSIs). We evaluated the models on four test sets: one biopsy (n = 522) and three surgical (n = 1129) achieving AUCs in the range 0.95 to 0.99. We have also compared the trained models to existing pre-trained models on different organs for adenocarcinoma classification and they have achieved lower AUC performances in the range 0.66 to 0.89 despite adenocarcinoma exhibiting some structural similarity to IDC. Therefore, performing fine-tuning on the breast IDC training set was beneficial for improving performance. The results demonstrate the potential use of such models to aid pathologists in clinical practice. ABSTRACT: Invasive ductal carcinoma (IDC) is the most common form of breast cancer. For the non-operative diagnosis of breast carcinoma, core needle biopsy has been widely used in recent years for the evaluation of histopathological features, as it can provide a definitive diagnosis between IDC and benign lesion (e.g., fibroadenoma), and it is cost effective. Due to its widespread use, it could potentially benefit from the use of AI-based tools to aid pathologists in their pathological diagnosis workflows. In this paper, we trained invasive ductal carcinoma (IDC) whole slide image (WSI) classification models using transfer learning and weakly-supervised learning. We evaluated the models on a core needle biopsy (n = 522) test set as well as three surgical test sets (n = 1129) obtaining ROC AUCs in the range of 0.95–0.98. The promising results demonstrate the potential of applying such models as diagnostic aid tools for pathologists in clinical practice. |
---|