Cargando…
Artificial Intelligence in Gastric Cancer: Identifying Gastric Cancer Using Endoscopic Images with Convolutional Neural Network
SIMPLE SUMMARY: Gastric cancer (GC) is one of the most newly diagnosed cancers and the fifth leading cause of death globally. Previous studies reported that the detection rate of gastric cancer (EGC) at an earlier stage is low, and the overall false-negative rate with esophagogastroduodenoscopy (EGD...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582393/ https://www.ncbi.nlm.nih.gov/pubmed/34771416 http://dx.doi.org/10.3390/cancers13215253 |
Sumario: | SIMPLE SUMMARY: Gastric cancer (GC) is one of the most newly diagnosed cancers and the fifth leading cause of death globally. Previous studies reported that the detection rate of gastric cancer (EGC) at an earlier stage is low, and the overall false-negative rate with esophagogastroduodenoscopy (EGD) is up to 25.8%, which often leads to inappropriate treatment. Accurate diagnosis of EGC can reduce unnecessary interventions and benefits treatment planning. Convolutional neural network (CNN) models have recently shown promising performance in analyzing medical images, including endoscopy. This study shows that an automated tool based on the CNN model could improve EGC diagnosis and treatment decision. ABSTRACT: Gastric cancer (GC) is one of the most newly diagnosed cancers and the fifth leading cause of death globally. Identification of early gastric cancer (EGC) can ensure quick treatment and reduce significant mortality. Therefore, we aimed to conduct a systematic review with a meta-analysis of current literature to evaluate the performance of the CNN model in detecting EGC. We conducted a systematic search in the online databases (e.g., PubMed, Embase, and Web of Science) for all relevant original studies on the subject of CNN in EGC published between 1 January 2010, and 26 March 2021. The Quality Assessment of Diagnostic Accuracy Studies-2 was used to assess the risk of bias. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were calculated. Moreover, a summary receiver operating characteristic curve (SROC) was plotted. Of the 171 studies retrieved, 15 studies met inclusion criteria. The application of the CNN model in the diagnosis of EGC achieved a SROC of 0.95, with corresponding sensitivity of 0.89 (0.88–0.89), and specificity of 0.89 (0.89–0.90). Pooled sensitivity and specificity for experts endoscopists were 0.77 (0.76–0.78), and 0.92 (0.91–0.93), respectively. However, the overall SROC for the CNN model and expert endoscopists was 0.95 and 0.90. The findings of this comprehensive study show that CNN model exhibited comparable performance to endoscopists in the diagnosis of EGC using digital endoscopy images. Given its scalability, the CNN model could enhance the performance of endoscopists to correctly stratify EGC patients and reduce work load. |
---|