Cargando…
Machine Learning Based on Morphological Features Enables Classification of Primary Intestinal T-Cell Lymphomas
SIMPLE SUMMARY: We presented a machine learning approach for accurate quantification of nuclear morphometrics and differential diagnosis of primary intestinal T-cell lymphomas. The human interpretable machine learning approach can be easily applied to other lymphomas and potentially even broader dis...
Autores principales: | Yu, Wei-Hsiang, Li, Chih-Hao, Wang, Ren-Ching, Yeh, Chao-Yuan, Chuang, Shih-Sung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582405/ https://www.ncbi.nlm.nih.gov/pubmed/34771625 http://dx.doi.org/10.3390/cancers13215463 |
Ejemplares similares
-
Density and size of lymphoid follicles are useful clues in differentiating primary intestinal follicular lymphoma from intestinal reactive lymphoid hyperplasia
por: Li, Hsin-Ni, et al.
Publicado: (2020) -
Endoscopic classification and pathological features of primary intestinal lymphangiectasia
por: Meng, Ming-Ming, et al.
Publicado: (2022) -
Classification and Detection of Mesothelioma Cancer Using Feature Selection-Enabled Machine Learning Technique
por: Shobana, M., et al.
Publicado: (2022) -
High MET gene copy number predicted poor prognosis in primary intestinal diffuse large B-cell lymphoma
por: Huang, Wan-Ting, et al.
Publicado: (2013) -
Rapid Polyp Classification in Colonoscopy Using Textural and Convolutional Features
por: Lo, Chung-Ming, et al.
Publicado: (2022)