Cargando…
Network-Based Analysis to Identify Drivers of Metastatic Prostate Cancer Using GoNetic
SIMPLE SUMMARY: The identification of cancer driver genes is, for statistical reasons, often biased toward genes that are altered frequently in a cohort. However, genes that are less frequently mutated can also alter cancer hallmarks. To detect such rarely mutated genes involved in driving metastati...
Autores principales: | de Schaetzen van Brienen, Louise, Miclotte, Giles, Larmuseau, Maarten, Van den Eynden, Jimmy, Marchal, Kathleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582433/ https://www.ncbi.nlm.nih.gov/pubmed/34771455 http://dx.doi.org/10.3390/cancers13215291 |
Ejemplares similares
-
Extracting functional insights from loss-of-function screens using deep link prediction
por: Strybol, Pieter-Paul, et al.
Publicado: (2022) -
PheNetic: network-based interpretation of molecular profiling data
por: De Maeyer, Dries, et al.
Publicado: (2015) -
Halvade somatic: Somatic variant calling with Apache Spark
por: Decap, Dries, et al.
Publicado: (2022) -
Comparative analysis of somatic variant calling on matched FF and FFPE WGS samples
por: de Schaetzen van Brienen, Louise, et al.
Publicado: (2020) -
Whole Slide Imaging-Based Prediction of TP53 Mutations Identifies an Aggressive Disease Phenotype in Prostate Cancer
por: Pizurica, Marija, et al.
Publicado: (2023)