Cargando…

Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer

SIMPLE SUMMARY: Magnetic Particle Imaging (MPI) is an emerging imaging technique that provides quantitative direct imaging of superparamagnetic iron oxide nanoparticles. In the last decade, MPI has shown great prospects as one of the magnetic methods other than Magnetic Resonance Imaging with applic...

Descripción completa

Detalles Bibliográficos
Autores principales: Tay, Zhi Wei, Chandrasekharan, Prashant, Fellows, Benjamin D., Arrizabalaga, Irati Rodrigo, Yu, Elaine, Olivo, Malini, Conolly, Steven M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582440/
https://www.ncbi.nlm.nih.gov/pubmed/34771448
http://dx.doi.org/10.3390/cancers13215285
Descripción
Sumario:SIMPLE SUMMARY: Magnetic Particle Imaging (MPI) is an emerging imaging technique that provides quantitative direct imaging of superparamagnetic iron oxide nanoparticles. In the last decade, MPI has shown great prospects as one of the magnetic methods other than Magnetic Resonance Imaging with applications covering cancer diagnosis, targeting enhancement, actuating cancer therapy, and post-therapy monitoring. Working on different physical principles from Magnetic Resonance Imaging, MPI benefits from ideal image contrast with zero background tissue signal, enabling hotspot-type images similar to Nuclear Medicine scans but using magnetic agents rather than radiotracers. In this review, we discussed the relevance of MPI to cancer diagnostics and image-guided therapy as well as recent progress to clinical translation. ABSTRACT: Background: Magnetic Particle Imaging (MPI) is an emerging imaging modality for quantitative direct imaging of superparamagnetic iron oxide nanoparticles (SPION or SPIO). With different physics from MRI, MPI benefits from ideal image contrast with zero background tissue signal. This enables clear visualization of cancer with image characteristics similar to PET or SPECT, but using radiation-free magnetic nanoparticles instead, with infinite-duration reporter persistence in vivo. MPI for cancer imaging: demonstrated months of quantitative imaging of the cancer-related immune response with in situ SPION-labelling of immune cells (e.g., neutrophils, CAR T-cells). Because MPI suffers absolutely no susceptibility artifacts in the lung, immuno-MPI could soon provide completely noninvasive early-stage diagnosis and treatment monitoring of lung cancers. MPI for magnetic steering: MPI gradients are ~150 × stronger than MRI, enabling remote magnetic steering of magneto-aerosol, nanoparticles, and catheter tips, enhancing therapeutic delivery by magnetic means. MPI for precision therapy: gradients enable focusing of magnetic hyperthermia and magnetic-actuated drug release with up to 2 mm precision. The extent of drug release from the magnetic nanocarrier can be quantitatively monitored by MPI of SPION’s MPS spectral changes within the nanocarrier. Conclusion: MPI is a promising new magnetic modality spanning cancer imaging to guided-therapy.