Cargando…

Standardization and Validation of Brachytherapy Seeds’ Modelling Using GATE and GGEMS Monte Carlo Toolkits

SIMPLE SUMMARY: This study used GATE and GGEMS simulation toolkits, to estimate dose distribution on Brachytherapy procedures. Specific guidelines were followed as defined by the American Association of Physicists in Medicine (AAPM) as well as by the European SocieTy for Radiotherapy and Oncology (E...

Descripción completa

Detalles Bibliográficos
Autores principales: Chatzipapas, Konstantinos P., Plachouris, Dimitris, Papadimitroulas, Panagiotis, Mountris, Konstantinos A., Bert, Julien, Visvikis, Dimitris, Mihailidis, Dimitris, Kagadis, George C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582469/
https://www.ncbi.nlm.nih.gov/pubmed/34771479
http://dx.doi.org/10.3390/cancers13215315
_version_ 1784596993470889984
author Chatzipapas, Konstantinos P.
Plachouris, Dimitris
Papadimitroulas, Panagiotis
Mountris, Konstantinos A.
Bert, Julien
Visvikis, Dimitris
Mihailidis, Dimitris
Kagadis, George C.
author_facet Chatzipapas, Konstantinos P.
Plachouris, Dimitris
Papadimitroulas, Panagiotis
Mountris, Konstantinos A.
Bert, Julien
Visvikis, Dimitris
Mihailidis, Dimitris
Kagadis, George C.
author_sort Chatzipapas, Konstantinos P.
collection PubMed
description SIMPLE SUMMARY: This study used GATE and GGEMS simulation toolkits, to estimate dose distribution on Brachytherapy procedures. Specific guidelines were followed as defined by the American Association of Physicists in Medicine (AAPM) as well as by the European SocieTy for Radiotherapy and Oncology (ESTRO). Several types of brachytherapy seeds were modelled and simulated, namely Low-Dose-Rate (LDR), High-Dose-Rate (HDR), and Pulsed-Dose-Rate (PDR). The basic difference between GATE and GGEMS is that GGEMS incorporates GPU capabilities, which makes the use of Monte Carlo (MC) simulations more accessible in clinical routine, by minimizing the computational time to obtain a dose map. During the validation procedure of both codes with protocol data, differences as well as uncertainties were measured within the margins defined by the guidelines. The study concluded that MC simulations may be utilized in clinical practice, to optimize dose distribution in real time, as well as to evaluate therapeutic plans. ABSTRACT: This study aims to validate GATE and GGEMS simulation toolkits for brachytherapy applications and to provide accurate models for six commercial brachytherapy seeds, which will be freely available for research purposes. The AAPM TG-43 guidelines were used for the validation of two Low Dose Rate (LDR), three High Dose Rate (HDR), and one Pulsed Dose Rate (PDR) brachytherapy seeds. Each seed was represented as a 3D model and then simulated in GATE to produce one single Phase-Space (PHSP) per seed. To test the validity of the simulations’ outcome, referenced data (provided by the TG-43) was compared with GATE results. Next, validation of the GGEMS toolkit was achieved by comparing its outcome with the GATE MC simulations, incorporating clinical data. The simulation outcomes on the radial dose function (RDF), anisotropy function (AF), and dose rate constant (DRC) for the six commercial seeds were compared with TG-43 values. The statistical uncertainty was limited to 1% for RDF, to 6% (maximum) for AF, and to 2.7% (maximum) for the DRC. GGEMS provided a good agreement with GATE when compared in different situations: (a) Homogeneous water sphere, (b) heterogeneous CT phantom, and (c) a realistic clinical case. In addition, GGEMS has the advantage of very fast simulations. For the clinical case, where TG-186 guidelines were considered, GATE required 1 h for the simulation while GGEMS needed 162 s to reach the same statistical uncertainty. This study produced accurate models and simulations of their emitted spectrum of commonly used commercial brachytherapy seeds which are freely available to the scientific community. Furthermore, GGEMS was validated as an MC GPU based tool for brachytherapy. More research is deemed necessary for the expansion of brachytherapy seed modeling.
format Online
Article
Text
id pubmed-8582469
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85824692021-11-12 Standardization and Validation of Brachytherapy Seeds’ Modelling Using GATE and GGEMS Monte Carlo Toolkits Chatzipapas, Konstantinos P. Plachouris, Dimitris Papadimitroulas, Panagiotis Mountris, Konstantinos A. Bert, Julien Visvikis, Dimitris Mihailidis, Dimitris Kagadis, George C. Cancers (Basel) Article SIMPLE SUMMARY: This study used GATE and GGEMS simulation toolkits, to estimate dose distribution on Brachytherapy procedures. Specific guidelines were followed as defined by the American Association of Physicists in Medicine (AAPM) as well as by the European SocieTy for Radiotherapy and Oncology (ESTRO). Several types of brachytherapy seeds were modelled and simulated, namely Low-Dose-Rate (LDR), High-Dose-Rate (HDR), and Pulsed-Dose-Rate (PDR). The basic difference between GATE and GGEMS is that GGEMS incorporates GPU capabilities, which makes the use of Monte Carlo (MC) simulations more accessible in clinical routine, by minimizing the computational time to obtain a dose map. During the validation procedure of both codes with protocol data, differences as well as uncertainties were measured within the margins defined by the guidelines. The study concluded that MC simulations may be utilized in clinical practice, to optimize dose distribution in real time, as well as to evaluate therapeutic plans. ABSTRACT: This study aims to validate GATE and GGEMS simulation toolkits for brachytherapy applications and to provide accurate models for six commercial brachytherapy seeds, which will be freely available for research purposes. The AAPM TG-43 guidelines were used for the validation of two Low Dose Rate (LDR), three High Dose Rate (HDR), and one Pulsed Dose Rate (PDR) brachytherapy seeds. Each seed was represented as a 3D model and then simulated in GATE to produce one single Phase-Space (PHSP) per seed. To test the validity of the simulations’ outcome, referenced data (provided by the TG-43) was compared with GATE results. Next, validation of the GGEMS toolkit was achieved by comparing its outcome with the GATE MC simulations, incorporating clinical data. The simulation outcomes on the radial dose function (RDF), anisotropy function (AF), and dose rate constant (DRC) for the six commercial seeds were compared with TG-43 values. The statistical uncertainty was limited to 1% for RDF, to 6% (maximum) for AF, and to 2.7% (maximum) for the DRC. GGEMS provided a good agreement with GATE when compared in different situations: (a) Homogeneous water sphere, (b) heterogeneous CT phantom, and (c) a realistic clinical case. In addition, GGEMS has the advantage of very fast simulations. For the clinical case, where TG-186 guidelines were considered, GATE required 1 h for the simulation while GGEMS needed 162 s to reach the same statistical uncertainty. This study produced accurate models and simulations of their emitted spectrum of commonly used commercial brachytherapy seeds which are freely available to the scientific community. Furthermore, GGEMS was validated as an MC GPU based tool for brachytherapy. More research is deemed necessary for the expansion of brachytherapy seed modeling. MDPI 2021-10-22 /pmc/articles/PMC8582469/ /pubmed/34771479 http://dx.doi.org/10.3390/cancers13215315 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Chatzipapas, Konstantinos P.
Plachouris, Dimitris
Papadimitroulas, Panagiotis
Mountris, Konstantinos A.
Bert, Julien
Visvikis, Dimitris
Mihailidis, Dimitris
Kagadis, George C.
Standardization and Validation of Brachytherapy Seeds’ Modelling Using GATE and GGEMS Monte Carlo Toolkits
title Standardization and Validation of Brachytherapy Seeds’ Modelling Using GATE and GGEMS Monte Carlo Toolkits
title_full Standardization and Validation of Brachytherapy Seeds’ Modelling Using GATE and GGEMS Monte Carlo Toolkits
title_fullStr Standardization and Validation of Brachytherapy Seeds’ Modelling Using GATE and GGEMS Monte Carlo Toolkits
title_full_unstemmed Standardization and Validation of Brachytherapy Seeds’ Modelling Using GATE and GGEMS Monte Carlo Toolkits
title_short Standardization and Validation of Brachytherapy Seeds’ Modelling Using GATE and GGEMS Monte Carlo Toolkits
title_sort standardization and validation of brachytherapy seeds’ modelling using gate and ggems monte carlo toolkits
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582469/
https://www.ncbi.nlm.nih.gov/pubmed/34771479
http://dx.doi.org/10.3390/cancers13215315
work_keys_str_mv AT chatzipapaskonstantinosp standardizationandvalidationofbrachytherapyseedsmodellingusinggateandggemsmontecarlotoolkits
AT plachourisdimitris standardizationandvalidationofbrachytherapyseedsmodellingusinggateandggemsmontecarlotoolkits
AT papadimitroulaspanagiotis standardizationandvalidationofbrachytherapyseedsmodellingusinggateandggemsmontecarlotoolkits
AT mountriskonstantinosa standardizationandvalidationofbrachytherapyseedsmodellingusinggateandggemsmontecarlotoolkits
AT bertjulien standardizationandvalidationofbrachytherapyseedsmodellingusinggateandggemsmontecarlotoolkits
AT visvikisdimitris standardizationandvalidationofbrachytherapyseedsmodellingusinggateandggemsmontecarlotoolkits
AT mihailidisdimitris standardizationandvalidationofbrachytherapyseedsmodellingusinggateandggemsmontecarlotoolkits
AT kagadisgeorgec standardizationandvalidationofbrachytherapyseedsmodellingusinggateandggemsmontecarlotoolkits