Cargando…
Incorporating Robustness to Imaging Physics into Radiomic Feature Selection for Breast Cancer Risk Estimation
SIMPLE SUMMARY: Mammographic density estimates can be combined with radiomic texture features to offer an even better assessment of breast cancer risk. However, some feature variations will be due to true parenchymal differences between women, but others will be due to imaging physics effects (contr...
Autores principales: | Acciavatti, Raymond J., Cohen, Eric A., Maghsoudi, Omid Haji, Gastounioti, Aimilia, Pantalone, Lauren, Hsieh, Meng-Kang, Conant, Emily F., Scott, Christopher G., Winham, Stacey J., Kerlikowske, Karla, Vachon, Celine, Maidment, Andrew D. A., Kontos, Despina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582675/ https://www.ncbi.nlm.nih.gov/pubmed/34771660 http://dx.doi.org/10.3390/cancers13215497 |
Ejemplares similares
-
Incorporating Breast Anatomy in Computational Phenotyping of Mammographic Parenchymal Patterns for Breast Cancer Risk Estimation
por: Gastounioti, Aimilia, et al.
Publicado: (2018) -
Beyond breast density: a review on the advancing role of parenchymal texture analysis in breast cancer risk assessment
por: Gastounioti, Aimilia, et al.
Publicado: (2016) -
Artificial intelligence in mammographic phenotyping of breast cancer risk: a narrative review
por: Gastounioti, Aimilia, et al.
Publicado: (2022) -
External Validation of a Mammography-Derived AI-Based Risk Model in a U.S. Breast Cancer Screening Cohort of White and Black Women
por: Gastounioti, Aimilia, et al.
Publicado: (2022) -
Are radiomic signatures ready for incorporation in the clinical pipeline?
por: Singh, Apurva, et al.
Publicado: (2023)