Cargando…
Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions
This study focused on the processes of free infiltration, precipitation displacement, and natural attenuation of the LNAPL under the condition of near-surface leakage. Sandbox experiments were performed to explore the migration characteristics of LNAPL in the vadose zone with two media structures an...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582731/ https://www.ncbi.nlm.nih.gov/pubmed/34769594 http://dx.doi.org/10.3390/ijerph182111073 |
_version_ | 1784597052174368768 |
---|---|
author | Zuo, Rui Zhao, Xiao Yang, Jie Pan, Minghao Xue, Zhenkun Gao, Xiang Wang, Jinsheng Teng, Yanguo |
author_facet | Zuo, Rui Zhao, Xiao Yang, Jie Pan, Minghao Xue, Zhenkun Gao, Xiang Wang, Jinsheng Teng, Yanguo |
author_sort | Zuo, Rui |
collection | PubMed |
description | This study focused on the processes of free infiltration, precipitation displacement, and natural attenuation of the LNAPL under the condition of near-surface leakage. Sandbox experiments were performed to explore the migration characteristics of LNAPL in the vadose zone with two media structures and the influences of the soil interface on the migration of LNAPL. The results indicate that the vertical migration velocity of the LNAPL infiltration front in medium and coarse sand was 1 order of magnitude higher than that in fine sand and that the LNAPL accumulated at the coarse–fine interface, which acted as the capillary barrier. Displacement of precipitation for LNAPL had little relationship with rainfall intensity and was obviously affected by medium particle size, where coarse sand (40.78%) > medium sand (20.5%) > fine sand (10%). The natural attenuation rate of the LNAPL in the vadose zone was related to the water content of the media; the natural attenuation rate of fine sand was higher. This study simulated the process of the LNAPL leakage from the near surface into the layered heterogeneous stratum, improved the understanding of the migration of the LNAPL under different stratum conditions, and can provide support for the treatment of LNAPL leakage events in the actual site. |
format | Online Article Text |
id | pubmed-8582731 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85827312021-11-12 Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions Zuo, Rui Zhao, Xiao Yang, Jie Pan, Minghao Xue, Zhenkun Gao, Xiang Wang, Jinsheng Teng, Yanguo Int J Environ Res Public Health Article This study focused on the processes of free infiltration, precipitation displacement, and natural attenuation of the LNAPL under the condition of near-surface leakage. Sandbox experiments were performed to explore the migration characteristics of LNAPL in the vadose zone with two media structures and the influences of the soil interface on the migration of LNAPL. The results indicate that the vertical migration velocity of the LNAPL infiltration front in medium and coarse sand was 1 order of magnitude higher than that in fine sand and that the LNAPL accumulated at the coarse–fine interface, which acted as the capillary barrier. Displacement of precipitation for LNAPL had little relationship with rainfall intensity and was obviously affected by medium particle size, where coarse sand (40.78%) > medium sand (20.5%) > fine sand (10%). The natural attenuation rate of the LNAPL in the vadose zone was related to the water content of the media; the natural attenuation rate of fine sand was higher. This study simulated the process of the LNAPL leakage from the near surface into the layered heterogeneous stratum, improved the understanding of the migration of the LNAPL under different stratum conditions, and can provide support for the treatment of LNAPL leakage events in the actual site. MDPI 2021-10-21 /pmc/articles/PMC8582731/ /pubmed/34769594 http://dx.doi.org/10.3390/ijerph182111073 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zuo, Rui Zhao, Xiao Yang, Jie Pan, Minghao Xue, Zhenkun Gao, Xiang Wang, Jinsheng Teng, Yanguo Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions |
title | Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions |
title_full | Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions |
title_fullStr | Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions |
title_full_unstemmed | Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions |
title_short | Analysis of the LNAPL Migration Process in the Vadose Zone under Two Different Media Conditions |
title_sort | analysis of the lnapl migration process in the vadose zone under two different media conditions |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582731/ https://www.ncbi.nlm.nih.gov/pubmed/34769594 http://dx.doi.org/10.3390/ijerph182111073 |
work_keys_str_mv | AT zuorui analysisofthelnaplmigrationprocessinthevadosezoneundertwodifferentmediaconditions AT zhaoxiao analysisofthelnaplmigrationprocessinthevadosezoneundertwodifferentmediaconditions AT yangjie analysisofthelnaplmigrationprocessinthevadosezoneundertwodifferentmediaconditions AT panminghao analysisofthelnaplmigrationprocessinthevadosezoneundertwodifferentmediaconditions AT xuezhenkun analysisofthelnaplmigrationprocessinthevadosezoneundertwodifferentmediaconditions AT gaoxiang analysisofthelnaplmigrationprocessinthevadosezoneundertwodifferentmediaconditions AT wangjinsheng analysisofthelnaplmigrationprocessinthevadosezoneundertwodifferentmediaconditions AT tengyanguo analysisofthelnaplmigrationprocessinthevadosezoneundertwodifferentmediaconditions |