Cargando…
Mapping rRNA 2’-O-methylations and identification of C/D snoRNAs in Arabidopsis thaliana plants
In all eukaryotic cells, the most abundant modification of ribosomal RNA (rRNA) is methylation at the ribose moiety (2ʹ-O-methylation). Ribose methylation at specific rRNA sites is guided by small nucleolar RNAs (snoRNAs) of C/D-box type (C/D snoRNA) and achieved by the methyltransferase Fibrillarin...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583080/ https://www.ncbi.nlm.nih.gov/pubmed/33596769 http://dx.doi.org/10.1080/15476286.2020.1869892 |
Sumario: | In all eukaryotic cells, the most abundant modification of ribosomal RNA (rRNA) is methylation at the ribose moiety (2ʹ-O-methylation). Ribose methylation at specific rRNA sites is guided by small nucleolar RNAs (snoRNAs) of C/D-box type (C/D snoRNA) and achieved by the methyltransferase Fibrillarin (FIB). Here we used the Illumina-based RiboMethSeq approach for mapping rRNA 2ʹ-O-methylation sites in A. thaliana Col-0 (WT) plants. This analysis detected novel C/D snoRNA-guided rRNA 2ʹ-O-methylation positions and also some orphan sites without a matching C/D snoRNA. Furthermore, immunoprecipitation of Arabidopsis FIB2 identified and demonstrated expression of C/D snoRNAs corresponding to majority of mapped rRNA sites. On the other hand, we show that disruption of Arabidopsis Nucleolin 1 gene (NUC1), encoding a major nucleolar protein, decreases 2ʹ-O-methylation at specific rRNA sites suggesting functional/structural interconnections of 2ʹ-O-methylation with nucleolus organization and plant development. Finally, based on our findings and existent database sets, we introduce a new nomenclature system for C/D snoRNA in Arabidopsis plants. |
---|