Cargando…
Characterisation of Temporal Patterns in Step Count Behaviour from Smartphone App Data: An Unsupervised Machine Learning Approach
The increasing ubiquity of smartphone data, with greater spatial and temporal coverage than achieved by traditional study designs, have the potential to provide insight into habitual physical activity patterns. This study implements and evaluates the utility of both K-means clustering and agglomerat...
Autores principales: | Pontin, Francesca, Lomax, Nik, Clarke, Graham, Morris, Michelle A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583116/ https://www.ncbi.nlm.nih.gov/pubmed/34769991 http://dx.doi.org/10.3390/ijerph182111476 |
Ejemplares similares
-
Objectively measuring the association between the built environment and physical activity: a systematic review and reporting framework
por: Pontin, Francesca L., et al.
Publicado: (2022) -
Clustering Accelerometer Activity Patterns from the UK Biobank Cohort
por: Clark, Stephen, et al.
Publicado: (2021) -
Carrying Position-Independent Ensemble Machine Learning Step-Counting Algorithm for Smartphones
por: Song, Zihan, et al.
Publicado: (2022) -
Unsupervised Assessment of Balance and Falls Risk Using a Smartphone and Machine Learning
por: Greene, Barry R., et al.
Publicado: (2021) -
Temporal and cultural limits of privacy in smartphone app usage
por: Sekara, Vedran, et al.
Publicado: (2021)