Cargando…
Review of Deep Learning-Based Atrial Fibrillation Detection Studies
Atrial fibrillation (AF) is a common arrhythmia that can lead to stroke, heart failure, and premature death. Manual screening of AF on electrocardiography (ECG) is time-consuming and prone to errors. To overcome these limitations, computer-aided diagnosis systems are developed using artificial intel...
Autores principales: | Murat, Fatma, Sadak, Ferhat, Yildirim, Ozal, Talo, Muhammed, Murat, Ender, Karabatak, Murat, Demir, Yakup, Tan, Ru-San, Acharya, U. Rajendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583162/ https://www.ncbi.nlm.nih.gov/pubmed/34769819 http://dx.doi.org/10.3390/ijerph182111302 |
Ejemplares similares
-
An Explainable Deep Learning Model to Prediction Dental Caries Using Panoramic Radiograph Images
por: Oztekin, Faruk, et al.
Publicado: (2023) -
Accurate deep neural network model to detect cardiac arrhythmia on more than 10,000 individual subject ECG records
por: Yildirim, Ozal, et al.
Publicado: (2020) -
An Automated Wavelet-Based Sleep Scoring Model Using EEG, EMG, and EOG Signals with More Than 8000 Subjects
por: Sharma, Manish, et al.
Publicado: (2022) -
Automated detection of COVID-19 cases using deep neural networks with X-ray images
por: Ozturk, Tulin, et al.
Publicado: (2020) -
Performance Evaluation of Quantum-Based Machine Learning Algorithms for Cardiac Arrhythmia Classification
por: Ozpolat, Zeynep, et al.
Publicado: (2023)