Cargando…
Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China
Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban grow...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583206/ https://www.ncbi.nlm.nih.gov/pubmed/34769532 http://dx.doi.org/10.3390/ijerph182111013 |
_version_ | 1784597159375536128 |
---|---|
author | Wang, Renyang He, Qingsong Zhang, Lu Wang, Huiying |
author_facet | Wang, Renyang He, Qingsong Zhang, Lu Wang, Huiying |
author_sort | Wang, Renyang |
collection | PubMed |
description | Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km(2), 102.69 km(2), and 23.48 km(2), respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. |
format | Online Article Text |
id | pubmed-8583206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85832062021-11-12 Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China Wang, Renyang He, Qingsong Zhang, Lu Wang, Huiying Int J Environ Res Public Health Article Enhancing urban vitality is a key goal for both the government and ordinary urban residents, and creating this vitality is emphasized in China’s urban development strategy. Enhancing urban vitality through the rational design of urban forms is a leading topic of Western urban research. An urban growth pattern (UGP) reflects the dual characteristics of a static pattern and the dynamic evolution of the external urban form. It affects urban vitality by influencing the spatial allocation of internal structural elements and patterns in the adjacent location. The cellular automata (CA) mode can effectively simulate the aggregation process of urban growth (infilling expansion or edge expansion). However, it does not simulate the diffusion of urban growth, specifically the evolution of outlying expansion. In addition, CA focuses on learning, simulating, and building knowledge about geographic processes, but does not spatially optimize collaborative land use against multiple objectives or model multi-scale land use. As such, this paper applies a coupling model called the “promoting urban vitality model,” based on cellular automata (CA) and genetic algorithm (GA) (abbreviated as UV-CAGA). UV-CAGA optimally allocates cells with different UGPs, creating a city form that promotes urban vitality. Wuhan, the largest city in Central China, was selected as a case study to simulate and optimize its urban morphology for 2025. The main findings were as follows. (1) The urban vitality of the optimized urban form scheme was 4.8% higher than the simulated natural expansion scheme. (2) Compared to 2015, after optimization, the simulated sizes of the newly increased outlying, edge, and infilling areas in 2025 were 6.51 km(2), 102.69 km(2), and 23.48 km(2), respectively; these increases accounted for 4.90%, 77.32%, and 17.68%, respectively, of the newly increased construction land area. This indicated that Wuhan is expected to have a very compact urban form. (3) The infilling expansion type resulted in the highest average urban vitality level (0.215); the edge expansion type had the second highest level (0.206); outlying growth achieved the lowest vitality level (0.199). The UV-CAGA model proposed in this paper improves on existing geographical process simulation and spatial optimization models. The study successfully couples the “bottom-up” CA model and “top-down” genetic algorithm to generate dynamic urban form optimization simulations. This significantly improves upon traditional CA models, which do not simulate the “diffusion” process. At the same time, the spatial optimization framework of the genetic algorithm in the model also provides insights related to other effects related to urban form optimization, such as urban environmental security, commuting, and air pollution. The integration of related research is expected to enrich and improve urban planning tools and improve the topic’s scientific foundation. MDPI 2021-10-20 /pmc/articles/PMC8583206/ /pubmed/34769532 http://dx.doi.org/10.3390/ijerph182111013 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Wang, Renyang He, Qingsong Zhang, Lu Wang, Huiying Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
title | Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
title_full | Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
title_fullStr | Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
title_full_unstemmed | Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
title_short | Coupling Cellular Automata and a Genetic Algorithm to Generate a Vibrant Urban Form—A Case Study of Wuhan, China |
title_sort | coupling cellular automata and a genetic algorithm to generate a vibrant urban form—a case study of wuhan, china |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583206/ https://www.ncbi.nlm.nih.gov/pubmed/34769532 http://dx.doi.org/10.3390/ijerph182111013 |
work_keys_str_mv | AT wangrenyang couplingcellularautomataandageneticalgorithmtogenerateavibranturbanformacasestudyofwuhanchina AT heqingsong couplingcellularautomataandageneticalgorithmtogenerateavibranturbanformacasestudyofwuhanchina AT zhanglu couplingcellularautomataandageneticalgorithmtogenerateavibranturbanformacasestudyofwuhanchina AT wanghuiying couplingcellularautomataandageneticalgorithmtogenerateavibranturbanformacasestudyofwuhanchina |