Cargando…
Crash Injury Severity Prediction Using an Ordinal Classification Machine Learning Approach
In many related works, nominal classification algorithms ignore the order between injury severity levels and make sub-optimal predictions. Existing ordinal classification methods suffer rank inconsistency and rank non-monotonicity. The aim of this paper is to propose an ordinal classification approa...
Autores principales: | Zhu, Shengxue, Wang, Ke, Li, Chongyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583475/ https://www.ncbi.nlm.nih.gov/pubmed/34770076 http://dx.doi.org/10.3390/ijerph182111564 |
Ejemplares similares
-
Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol
por: Assi, Khaled, et al.
Publicado: (2020) -
Crash severity analysis of vulnerable road users using machine learning
por: Komol, Md Mostafizur Rahman, et al.
Publicado: (2021) -
Factor Retention Using Machine Learning With Ordinal Data
por: Goretzko, David, et al.
Publicado: (2022) -
A comparative study on machine learning based algorithms for prediction of motorcycle crash severity
por: Wahab, Lukuman, et al.
Publicado: (2019) -
Vehicular crash data used to rank intersections by injury crash frequency and severity
por: Liu, Yi, et al.
Publicado: (2016)