Cargando…
A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism
CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3′s high catalytic efficiency, ease of production and malleable active site makes the enz...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583553/ https://www.ncbi.nlm.nih.gov/pubmed/34768811 http://dx.doi.org/10.3390/ijms222111380 |
_version_ | 1784597231439970304 |
---|---|
author | Thistlethwaite, Sian Jeffreys, Laura N. Girvan, Hazel M. McLean, Kirsty J. Munro, Andrew W. |
author_facet | Thistlethwaite, Sian Jeffreys, Laura N. Girvan, Hazel M. McLean, Kirsty J. Munro, Andrew W. |
author_sort | Thistlethwaite, Sian |
collection | PubMed |
description | CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3′s high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production. |
format | Online Article Text |
id | pubmed-8583553 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85835532021-11-12 A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism Thistlethwaite, Sian Jeffreys, Laura N. Girvan, Hazel M. McLean, Kirsty J. Munro, Andrew W. Int J Mol Sci Review CYP102A1 (BM3) is a catalytically self-sufficient flavocytochrome fusion protein isolated from Bacillus megaterium, which displays similar metabolic capabilities to many drug-metabolizing human P450 isoforms. BM3′s high catalytic efficiency, ease of production and malleable active site makes the enzyme a desirable tool in the production of small molecule metabolites, especially for compounds that exhibit drug-like chemical properties. The engineering of select key residues within the BM3 active site vastly expands the catalytic repertoire, generating variants which can perform a range of modifications. This provides an attractive alternative route to the production of valuable compounds that are often laborious to synthesize via traditional organic means. Extensive studies have been conducted with the aim of engineering BM3 to expand metabolite production towards a comprehensive range of drug-like compounds, with many key examples found both in the literature and in the wider industrial bioproduction setting of desirable oxy-metabolite production by both wild-type BM3 and related variants. This review covers the past and current research on the engineering of BM3 to produce drug metabolites and highlights its crucial role in the future of biosynthetic pharmaceutical production. MDPI 2021-10-21 /pmc/articles/PMC8583553/ /pubmed/34768811 http://dx.doi.org/10.3390/ijms222111380 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Thistlethwaite, Sian Jeffreys, Laura N. Girvan, Hazel M. McLean, Kirsty J. Munro, Andrew W. A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism |
title | A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism |
title_full | A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism |
title_fullStr | A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism |
title_full_unstemmed | A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism |
title_short | A Promiscuous Bacterial P450: The Unparalleled Diversity of BM3 in Pharmaceutical Metabolism |
title_sort | promiscuous bacterial p450: the unparalleled diversity of bm3 in pharmaceutical metabolism |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8583553/ https://www.ncbi.nlm.nih.gov/pubmed/34768811 http://dx.doi.org/10.3390/ijms222111380 |
work_keys_str_mv | AT thistlethwaitesian apromiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT jeffreyslauran apromiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT girvanhazelm apromiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT mcleankirstyj apromiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT munroandreww apromiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT thistlethwaitesian promiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT jeffreyslauran promiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT girvanhazelm promiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT mcleankirstyj promiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism AT munroandreww promiscuousbacterialp450theunparalleleddiversityofbm3inpharmaceuticalmetabolism |