Cargando…
V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization
We propose a computational workflow to design novel drug-like molecules by combining the global optimization of molecular properties and protein-ligand docking with machine learning. However, most existing methods depend heavily on experimental data, and many targets do not have sufficient data to t...
Autores principales: | Choi, Jieun, Lee, Juyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584000/ https://www.ncbi.nlm.nih.gov/pubmed/34769065 http://dx.doi.org/10.3390/ijms222111635 |
Ejemplares similares
-
FireDock: a web server for fast interaction refinement in molecular docking(†)
por: Mashiach, Efrat, et al.
Publicado: (2008) -
PLANTAIN: Diffusion-inspired Pose Score Minimization for Fast and Accurate Molecular Docking
por: Brocidiacono, Michael, et al.
Publicado: (2023) -
Molecular docking and machine learning analysis of Abemaciclib in colon cancer
por: Liñares-Blanco, Jose, et al.
Publicado: (2020) -
NeuralDock: Rapid and Conformation-Agnostic Docking of Small Molecules
por: Sha, Congzhou M., et al.
Publicado: (2022) -
Docking for molecules that bind in a symmetric stack with SymDOCK
por: Smith, Matthew S., et al.
Publicado: (2023)