Cargando…

TAAR1 Expression in Human Macrophages and Brain Tissue: A Potential Novel Facet of MS Neuroinflammation

TAAR1 is a neuroregulator with emerging evidence suggesting a role in immunomodulation. Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Here, we investigate TAAR1 expression in human primary monocytes, peripherally-derived macrophages, and MS brain...

Descripción completa

Detalles Bibliográficos
Autores principales: Barnes, David A., Galloway, Dylan A., Hoener, Marius C., Berry, Mark D., Moore, Craig S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584001/
https://www.ncbi.nlm.nih.gov/pubmed/34769007
http://dx.doi.org/10.3390/ijms222111576
Descripción
Sumario:TAAR1 is a neuroregulator with emerging evidence suggesting a role in immunomodulation. Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. Here, we investigate TAAR1 expression in human primary monocytes, peripherally-derived macrophages, and MS brain tissue. RT-qPCR was used to assess TAAR1 levels in MS monocytes. Using a previously validated anti-human TAAR1 antibody and fluorescence microscopy, TAAR1 protein was visualized in lipopolysaccharide-stimulated or basal human macrophages, as well as macrophage/microglia populations surrounding, bordering, and within a mixed active/inactive MS lesion. In vivo, TAAR1 mRNA expression was significantly lower in MS monocytes compared to age- and sex-matched healthy controls. In vitro, TAAR1 protein showed a predominant nuclear localization in quiescent/control macrophages with a shift to a diffuse intracellular distribution following lipopolysaccharide-induced activation. In brain tissue, TAAR1 protein was predominantly expressed in macrophages/microglia within the border region of mixed active/inactive MS lesions. Considering that TAAR1-mediated anti-inflammatory effects have been previously reported, decreased mRNA in MS patients suggests possible pathophysiologic relevance. A shift in TAAR1 localization following pro-inflammatory activation suggests its function is altered in pro-inflammatory states, while TAAR1-expressing macrophages/microglia bordering an MS lesion supports TAAR1 as a novel pharmacological target in cells directly implicated in MS neuroinflammation.