Cargando…
Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin
The nature and mechanisms of interaction between two selected methyl benzoate derivatives (methyl o-methoxy p-methylaminobenzoate–I and methyl o-hydroxy p-methylaminobenzoate–II) and model transport protein bovine serum albumin (BSA) was studied using steady-state and time-resolved spectroscopic tec...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584066/ https://www.ncbi.nlm.nih.gov/pubmed/34769135 http://dx.doi.org/10.3390/ijms222111705 |
_version_ | 1784597356441763840 |
---|---|
author | Baranowska, Karolina Mońka, Michał Bojarski, Piotr Józefowicz, Marek |
author_facet | Baranowska, Karolina Mońka, Michał Bojarski, Piotr Józefowicz, Marek |
author_sort | Baranowska, Karolina |
collection | PubMed |
description | The nature and mechanisms of interaction between two selected methyl benzoate derivatives (methyl o-methoxy p-methylaminobenzoate–I and methyl o-hydroxy p-methylaminobenzoate–II) and model transport protein bovine serum albumin (BSA) was studied using steady-state and time-resolved spectroscopic techniques. In order to understand the role of Trp residue of BSA in the I-BSA and II-BSA interaction, the effect of free Trp amino acid on the both emission modes (LE–locally excited (I and II) and ESIPT–excited state intramolecular proton transfer (II)) was investigated as well. Experimental results show that the investigated interactions (with both BSA and Trp) are mostly conditioned by the ground and excited state complex formation processes. Both molecules form stable complexes with BSA and Trp (with 1:1 stoichiometry) in the ground and excited states. The binding constants were in the order of 10(4) M(−1). The absorption- and fluorescence-titration experiments along with the time-resolved fluorescence measurements show that the binding of the I and II causes fluorescence quenching of BSA through the static mechanism, revealing a 1:1 interaction. The magnitude and the sign of the thermodynamic parameters, ΔH, ΔS, and ΔG, determined from van’t Hoff relationship, confirm the predominance of the hydrogen-bonding interactions for the binding phenomenon. To improve and complete knowledge of methyl benzoate derivative-protein interactions in relation to supramolecular solvation dynamics, the time-dependent fluorescence Stokes’ shifts, represented by the normalized spectral response function c(t), was studied. Our studies reveal that the solvation dynamics that occurs in subpicosecond time scale in neat solvents of different polarities is slowed down significantly when the organic molecule is transferred to BSA cavity. |
format | Online Article Text |
id | pubmed-8584066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85840662021-11-12 Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin Baranowska, Karolina Mońka, Michał Bojarski, Piotr Józefowicz, Marek Int J Mol Sci Article The nature and mechanisms of interaction between two selected methyl benzoate derivatives (methyl o-methoxy p-methylaminobenzoate–I and methyl o-hydroxy p-methylaminobenzoate–II) and model transport protein bovine serum albumin (BSA) was studied using steady-state and time-resolved spectroscopic techniques. In order to understand the role of Trp residue of BSA in the I-BSA and II-BSA interaction, the effect of free Trp amino acid on the both emission modes (LE–locally excited (I and II) and ESIPT–excited state intramolecular proton transfer (II)) was investigated as well. Experimental results show that the investigated interactions (with both BSA and Trp) are mostly conditioned by the ground and excited state complex formation processes. Both molecules form stable complexes with BSA and Trp (with 1:1 stoichiometry) in the ground and excited states. The binding constants were in the order of 10(4) M(−1). The absorption- and fluorescence-titration experiments along with the time-resolved fluorescence measurements show that the binding of the I and II causes fluorescence quenching of BSA through the static mechanism, revealing a 1:1 interaction. The magnitude and the sign of the thermodynamic parameters, ΔH, ΔS, and ΔG, determined from van’t Hoff relationship, confirm the predominance of the hydrogen-bonding interactions for the binding phenomenon. To improve and complete knowledge of methyl benzoate derivative-protein interactions in relation to supramolecular solvation dynamics, the time-dependent fluorescence Stokes’ shifts, represented by the normalized spectral response function c(t), was studied. Our studies reveal that the solvation dynamics that occurs in subpicosecond time scale in neat solvents of different polarities is slowed down significantly when the organic molecule is transferred to BSA cavity. MDPI 2021-10-28 /pmc/articles/PMC8584066/ /pubmed/34769135 http://dx.doi.org/10.3390/ijms222111705 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Baranowska, Karolina Mońka, Michał Bojarski, Piotr Józefowicz, Marek Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin |
title | Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin |
title_full | Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin |
title_fullStr | Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin |
title_full_unstemmed | Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin |
title_short | Insight into Molecular Interactions of Two Methyl Benzoate Derivatives with Bovine Serum Albumin |
title_sort | insight into molecular interactions of two methyl benzoate derivatives with bovine serum albumin |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584066/ https://www.ncbi.nlm.nih.gov/pubmed/34769135 http://dx.doi.org/10.3390/ijms222111705 |
work_keys_str_mv | AT baranowskakarolina insightintomolecularinteractionsoftwomethylbenzoatederivativeswithbovineserumalbumin AT monkamichał insightintomolecularinteractionsoftwomethylbenzoatederivativeswithbovineserumalbumin AT bojarskipiotr insightintomolecularinteractionsoftwomethylbenzoatederivativeswithbovineserumalbumin AT jozefowiczmarek insightintomolecularinteractionsoftwomethylbenzoatederivativeswithbovineserumalbumin |