Cargando…
Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells
Toxicology studies on pristine graphene are limited and lack significant correlations with actual human response. The goal of the current study was to determine the response of total colonic human tissue to pristine graphene exposure. Biopsy punches of colon tissues from healthy human were used to a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584180/ https://www.ncbi.nlm.nih.gov/pubmed/34768873 http://dx.doi.org/10.3390/ijms222111443 |
_version_ | 1784597386228662272 |
---|---|
author | Lahiani, Mohamed H. Gokulan, Kuppan Williams, Katherine Khare, Sangeeta |
author_facet | Lahiani, Mohamed H. Gokulan, Kuppan Williams, Katherine Khare, Sangeeta |
author_sort | Lahiani, Mohamed H. |
collection | PubMed |
description | Toxicology studies on pristine graphene are limited and lack significant correlations with actual human response. The goal of the current study was to determine the response of total colonic human tissue to pristine graphene exposure. Biopsy punches of colon tissues from healthy human were used to assess the biological response after ex vivo exposure to graphene at three different concentrations (1, 10, and 100 µg/mL). mRNA expression of specific genes or intestinal cytokine abundance was assessed using real-time PCR or multiplex immunoassays, respectively. Pristine graphene-activated genes that are related to binding and adhesion (GTPase and KRAS) within 2 h of exposure. Furthermore, the PCNA (proliferating cell nuclear antigen) gene was upregulated after exposure to graphene at all concentrations. Ingenuity pathway analysis revealed that STAT3 and VEGF signaling pathways (known to be involved in cell proliferation and growth) were upregulated. Graphene exposure (10 µg/mL) for 24 h significantly increased levels of pro-inflammatory cytokines IFNγ, IL-8, IL-17, IL-6, IL-9, MIP-1α, and Eotaxin. Collectively, these results indicated that graphene may activate the STAT3–IL23–IL17 response axis. The findings in this study provide information on toxicity evaluation using a human-relevant ex vivo colon model and serve as a basis for further exploration of its bio-applications. |
format | Online Article Text |
id | pubmed-8584180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85841802021-11-12 Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells Lahiani, Mohamed H. Gokulan, Kuppan Williams, Katherine Khare, Sangeeta Int J Mol Sci Article Toxicology studies on pristine graphene are limited and lack significant correlations with actual human response. The goal of the current study was to determine the response of total colonic human tissue to pristine graphene exposure. Biopsy punches of colon tissues from healthy human were used to assess the biological response after ex vivo exposure to graphene at three different concentrations (1, 10, and 100 µg/mL). mRNA expression of specific genes or intestinal cytokine abundance was assessed using real-time PCR or multiplex immunoassays, respectively. Pristine graphene-activated genes that are related to binding and adhesion (GTPase and KRAS) within 2 h of exposure. Furthermore, the PCNA (proliferating cell nuclear antigen) gene was upregulated after exposure to graphene at all concentrations. Ingenuity pathway analysis revealed that STAT3 and VEGF signaling pathways (known to be involved in cell proliferation and growth) were upregulated. Graphene exposure (10 µg/mL) for 24 h significantly increased levels of pro-inflammatory cytokines IFNγ, IL-8, IL-17, IL-6, IL-9, MIP-1α, and Eotaxin. Collectively, these results indicated that graphene may activate the STAT3–IL23–IL17 response axis. The findings in this study provide information on toxicity evaluation using a human-relevant ex vivo colon model and serve as a basis for further exploration of its bio-applications. MDPI 2021-10-23 /pmc/articles/PMC8584180/ /pubmed/34768873 http://dx.doi.org/10.3390/ijms222111443 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lahiani, Mohamed H. Gokulan, Kuppan Williams, Katherine Khare, Sangeeta Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells |
title | Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells |
title_full | Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells |
title_fullStr | Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells |
title_full_unstemmed | Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells |
title_short | Ex Vivo Human Colon Tissue Exposure to Pristine Graphene Activates Genes Involved in the Binding, Adhesion and Proliferation of Epithelial Cells |
title_sort | ex vivo human colon tissue exposure to pristine graphene activates genes involved in the binding, adhesion and proliferation of epithelial cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584180/ https://www.ncbi.nlm.nih.gov/pubmed/34768873 http://dx.doi.org/10.3390/ijms222111443 |
work_keys_str_mv | AT lahianimohamedh exvivohumancolontissueexposuretopristinegrapheneactivatesgenesinvolvedinthebindingadhesionandproliferationofepithelialcells AT gokulankuppan exvivohumancolontissueexposuretopristinegrapheneactivatesgenesinvolvedinthebindingadhesionandproliferationofepithelialcells AT williamskatherine exvivohumancolontissueexposuretopristinegrapheneactivatesgenesinvolvedinthebindingadhesionandproliferationofepithelialcells AT kharesangeeta exvivohumancolontissueexposuretopristinegrapheneactivatesgenesinvolvedinthebindingadhesionandproliferationofepithelialcells |