Cargando…
Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering
Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584198/ https://www.ncbi.nlm.nih.gov/pubmed/34769034 http://dx.doi.org/10.3390/ijms222111600 |
_version_ | 1784597391465250816 |
---|---|
author | Choi, Dong Jin Choi, Kyoung Park, Sang Jun Kim, Young-Jin Chung, Seok Kim, Chun-Ho |
author_facet | Choi, Dong Jin Choi, Kyoung Park, Sang Jun Kim, Young-Jin Chung, Seok Kim, Chun-Ho |
author_sort | Choi, Dong Jin |
collection | PubMed |
description | Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (−10 °C cryogenic plate, 40–80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts’ proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks. |
format | Online Article Text |
id | pubmed-8584198 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85841982021-11-12 Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering Choi, Dong Jin Choi, Kyoung Park, Sang Jun Kim, Young-Jin Chung, Seok Kim, Chun-Ho Int J Mol Sci Article Gelatin has excellent biological properties, but its poor physical properties are a major obstacle to its use as a biomaterial ink. These disadvantages not only worsen the printability of gelatin biomaterial ink, but also reduce the dimensional stability of its 3D scaffolds and limit its application in the tissue engineering field. Herein, biodegradable suture fibers were added into a gelatin biomaterial ink to improve the printability, mechanical strength, and dimensional stability of the 3D printed scaffolds. The suture fiber reinforced gelatin 3D scaffolds were fabricated using the thermo-responsive properties of gelatin under optimized 3D printing conditions (−10 °C cryogenic plate, 40–80 kPa pneumatic pressure, and 9 mm/s printing speed), and were crosslinked using EDC/NHS to maintain their 3D structures. Scanning electron microscopy images revealed that the morphologies of the 3D printed scaffolds maintained their 3D structure after crosslinking. The addition of 0.5% (w/v) of suture fibers increased the printing accuracy of the 3D printed scaffolds to 97%. The suture fibers also increased the mechanical strength of the 3D printed scaffolds by up to 6-fold, and the degradation rate could be controlled by the suture fiber content. In in vitro cell studies, DNA assay results showed that human dermal fibroblasts’ proliferation rate of a 3D printed scaffold containing 0.5% suture fiber was 10% higher than that of a 3D printed scaffold without suture fibers after 14 days of culture. Interestingly, the supplement of suture fibers into gelatin biomaterial ink was able to minimize the cell-mediated contraction of the cell cultured 3D scaffolds over the cell culture period. These results show that advanced biomaterial inks can be developed by supplementing biodegradable fibers to improve the poor physical properties of natural polymer-based biomaterial inks. MDPI 2021-10-27 /pmc/articles/PMC8584198/ /pubmed/34769034 http://dx.doi.org/10.3390/ijms222111600 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Choi, Dong Jin Choi, Kyoung Park, Sang Jun Kim, Young-Jin Chung, Seok Kim, Chun-Ho Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering |
title | Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering |
title_full | Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering |
title_fullStr | Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering |
title_full_unstemmed | Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering |
title_short | Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering |
title_sort | suture fiber reinforcement of a 3d printed gelatin scaffold for its potential application in soft tissue engineering |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584198/ https://www.ncbi.nlm.nih.gov/pubmed/34769034 http://dx.doi.org/10.3390/ijms222111600 |
work_keys_str_mv | AT choidongjin suturefiberreinforcementofa3dprintedgelatinscaffoldforitspotentialapplicationinsofttissueengineering AT choikyoung suturefiberreinforcementofa3dprintedgelatinscaffoldforitspotentialapplicationinsofttissueengineering AT parksangjun suturefiberreinforcementofa3dprintedgelatinscaffoldforitspotentialapplicationinsofttissueengineering AT kimyoungjin suturefiberreinforcementofa3dprintedgelatinscaffoldforitspotentialapplicationinsofttissueengineering AT chungseok suturefiberreinforcementofa3dprintedgelatinscaffoldforitspotentialapplicationinsofttissueengineering AT kimchunho suturefiberreinforcementofa3dprintedgelatinscaffoldforitspotentialapplicationinsofttissueengineering |