Cargando…

Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning

The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP com...

Descripción completa

Detalles Bibliográficos
Autores principales: Munteanu, Cristian R., Gutiérrez-Asorey, Pablo, Blanes-Rodríguez, Manuel, Hidalgo-Delgado, Ismael, Blanco Liverio, María de Jesús, Castiñeiras Galdo, Brais, Porto-Pazos, Ana B., Gestal, Marcos, Arrasate, Sonia, González-Díaz, Humbert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584266/
https://www.ncbi.nlm.nih.gov/pubmed/34768951
http://dx.doi.org/10.3390/ijms222111519
_version_ 1784597407801016320
author Munteanu, Cristian R.
Gutiérrez-Asorey, Pablo
Blanes-Rodríguez, Manuel
Hidalgo-Delgado, Ismael
Blanco Liverio, María de Jesús
Castiñeiras Galdo, Brais
Porto-Pazos, Ana B.
Gestal, Marcos
Arrasate, Sonia
González-Díaz, Humbert
author_facet Munteanu, Cristian R.
Gutiérrez-Asorey, Pablo
Blanes-Rodríguez, Manuel
Hidalgo-Delgado, Ismael
Blanco Liverio, María de Jesús
Castiñeiras Galdo, Brais
Porto-Pazos, Ana B.
Gestal, Marcos
Arrasate, Sonia
González-Díaz, Humbert
author_sort Munteanu, Cristian R.
collection PubMed
description The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors.
format Online
Article
Text
id pubmed-8584266
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85842662021-11-12 Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning Munteanu, Cristian R. Gutiérrez-Asorey, Pablo Blanes-Rodríguez, Manuel Hidalgo-Delgado, Ismael Blanco Liverio, María de Jesús Castiñeiras Galdo, Brais Porto-Pazos, Ana B. Gestal, Marcos Arrasate, Sonia González-Díaz, Humbert Int J Mol Sci Article The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors. MDPI 2021-10-26 /pmc/articles/PMC8584266/ /pubmed/34768951 http://dx.doi.org/10.3390/ijms222111519 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Munteanu, Cristian R.
Gutiérrez-Asorey, Pablo
Blanes-Rodríguez, Manuel
Hidalgo-Delgado, Ismael
Blanco Liverio, María de Jesús
Castiñeiras Galdo, Brais
Porto-Pazos, Ana B.
Gestal, Marcos
Arrasate, Sonia
González-Díaz, Humbert
Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_full Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_fullStr Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_full_unstemmed Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_short Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
title_sort prediction of anti-glioblastoma drug-decorated nanoparticle delivery systems using molecular descriptors and machine learning
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584266/
https://www.ncbi.nlm.nih.gov/pubmed/34768951
http://dx.doi.org/10.3390/ijms222111519
work_keys_str_mv AT munteanucristianr predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT gutierrezasoreypablo predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT blanesrodriguezmanuel predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT hidalgodelgadoismael predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT blancoliveriomariadejesus predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT castineirasgaldobrais predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT portopazosanab predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT gestalmarcos predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT arrasatesonia predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning
AT gonzalezdiazhumbert predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning