Cargando…
Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP com...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584266/ https://www.ncbi.nlm.nih.gov/pubmed/34768951 http://dx.doi.org/10.3390/ijms222111519 |
_version_ | 1784597407801016320 |
---|---|
author | Munteanu, Cristian R. Gutiérrez-Asorey, Pablo Blanes-Rodríguez, Manuel Hidalgo-Delgado, Ismael Blanco Liverio, María de Jesús Castiñeiras Galdo, Brais Porto-Pazos, Ana B. Gestal, Marcos Arrasate, Sonia González-Díaz, Humbert |
author_facet | Munteanu, Cristian R. Gutiérrez-Asorey, Pablo Blanes-Rodríguez, Manuel Hidalgo-Delgado, Ismael Blanco Liverio, María de Jesús Castiñeiras Galdo, Brais Porto-Pazos, Ana B. Gestal, Marcos Arrasate, Sonia González-Díaz, Humbert |
author_sort | Munteanu, Cristian R. |
collection | PubMed |
description | The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors. |
format | Online Article Text |
id | pubmed-8584266 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85842662021-11-12 Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning Munteanu, Cristian R. Gutiérrez-Asorey, Pablo Blanes-Rodríguez, Manuel Hidalgo-Delgado, Ismael Blanco Liverio, María de Jesús Castiñeiras Galdo, Brais Porto-Pazos, Ana B. Gestal, Marcos Arrasate, Sonia González-Díaz, Humbert Int J Mol Sci Article The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP complexes with anti-glioblastoma activity. PTML models use the perturbations of molecular descriptors of drugs and nanoparticles as inputs in experimental conditions. The raw dataset was obtained by mixing the nanoparticle experimental data with drug assays from the ChEMBL database. Ten types of machine learning methods have been tested. Only 41 features have been selected for 855,129 drug-nanoparticle complexes. The best model was obtained with the Bagging classifier, an ensemble meta-estimator based on 20 decision trees, with an area under the receiver operating characteristic curve (AUROC) of 0.96, and an accuracy of 87% (test subset). This model could be useful for the virtual screening of nanoparticle-drug complexes in glioblastoma. All the calculations can be reproduced with the datasets and python scripts, which are freely available as a GitHub repository from authors. MDPI 2021-10-26 /pmc/articles/PMC8584266/ /pubmed/34768951 http://dx.doi.org/10.3390/ijms222111519 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Munteanu, Cristian R. Gutiérrez-Asorey, Pablo Blanes-Rodríguez, Manuel Hidalgo-Delgado, Ismael Blanco Liverio, María de Jesús Castiñeiras Galdo, Brais Porto-Pazos, Ana B. Gestal, Marcos Arrasate, Sonia González-Díaz, Humbert Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning |
title | Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning |
title_full | Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning |
title_fullStr | Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning |
title_full_unstemmed | Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning |
title_short | Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning |
title_sort | prediction of anti-glioblastoma drug-decorated nanoparticle delivery systems using molecular descriptors and machine learning |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584266/ https://www.ncbi.nlm.nih.gov/pubmed/34768951 http://dx.doi.org/10.3390/ijms222111519 |
work_keys_str_mv | AT munteanucristianr predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT gutierrezasoreypablo predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT blanesrodriguezmanuel predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT hidalgodelgadoismael predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT blancoliveriomariadejesus predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT castineirasgaldobrais predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT portopazosanab predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT gestalmarcos predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT arrasatesonia predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning AT gonzalezdiazhumbert predictionofantiglioblastomadrugdecoratednanoparticledeliverysystemsusingmoleculardescriptorsandmachinelearning |