Cargando…
Prediction of Anti-Glioblastoma Drug-Decorated Nanoparticle Delivery Systems Using Molecular Descriptors and Machine Learning
The theoretical prediction of drug-decorated nanoparticles (DDNPs) has become a very important task in medical applications. For the current paper, Perturbation Theory Machine Learning (PTML) models were built to predict the probability of different pairs of drugs and nanoparticles creating DDNP com...
Autores principales: | Munteanu, Cristian R., Gutiérrez-Asorey, Pablo, Blanes-Rodríguez, Manuel, Hidalgo-Delgado, Ismael, Blanco Liverio, María de Jesús, Castiñeiras Galdo, Brais, Porto-Pazos, Ana B., Gestal, Marcos, Arrasate, Sonia, González-Díaz, Humbert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584266/ https://www.ncbi.nlm.nih.gov/pubmed/34768951 http://dx.doi.org/10.3390/ijms222111519 |
Ejemplares similares
-
Prediction of Antimalarial Drug-Decorated Nanoparticle Delivery Systems with Random Forest Models
por: Urista, Diana V., et al.
Publicado: (2020) -
Improvement of Epitope Prediction Using Peptide Sequence Descriptors and Machine Learning
por: Munteanu, Cristian R., et al.
Publicado: (2019) -
A methodology for the design of experiments in computational intelligence with multiple regression models
por: Fernandez-Lozano, Carlos, et al.
Publicado: (2016) -
Perturbation-Theory Machine Learning (PTML) Multilabel
Model of the ChEMBL Dataset of Preclinical Assays for Antisarcoma
Compounds
por: Cabrera-Andrade, Alejandro, et al.
Publicado: (2020) -
Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks
por: López-Cortés, Andrés, et al.
Publicado: (2020)