Cargando…
Prediction of Peptide Detectability Based on CapsNet and Convolutional Block Attention Module
According to proteomics technology, as impacted by the complexity of sampling in the experimental process, several problems remain with the reproducibility of mass spectrometry experiments, and the peptide identification and quantitative results continue to be random. Predicting the detectability ex...
Autores principales: | Yu, Minzhe, Duan, Yushuai, Li, Zhong, Zhang, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584443/ https://www.ncbi.nlm.nih.gov/pubmed/34769509 http://dx.doi.org/10.3390/ijms222112080 |
Ejemplares similares
-
DA-CapsNet: dual attention mechanism capsule network
por: Huang, Wenkai, et al.
Publicado: (2020) -
Efficient-CapsNet: capsule network with self-attention routing
por: Mazzia, Vittorio, et al.
Publicado: (2021) -
Multitask CapsNet: An Imbalanced Data Deep Learning
Method for Predicting Toxicants
por: Wang, Yiwei, et al.
Publicado: (2021) -
CapsNet-MHC predicts peptide-MHC class I binding based on capsule neural networks
por: Kalemati, Mahmood, et al.
Publicado: (2023) -
CapsNet-SSP: multilane capsule network for predicting human saliva-secretory proteins
por: Du, Wei, et al.
Publicado: (2020)