Cargando…

Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish

MicroRNAs (miRNAs) play important roles in post-transcriptional repression in nearly every biological process including germ cell development. Previously, we have identified a zebrafish germ plasm-specific miRNA miR-202-5p, which regulates PGC migration through targeting cdc42se1 to protect cdc42 ex...

Descripción completa

Detalles Bibliográficos
Autores principales: Mo, Chengyu, Li, Wenjing, Jia, Kuntong, Liu, Wei, Yi, Meisheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584686/
https://www.ncbi.nlm.nih.gov/pubmed/34769390
http://dx.doi.org/10.3390/ijms222111962
_version_ 1784597509825363968
author Mo, Chengyu
Li, Wenjing
Jia, Kuntong
Liu, Wei
Yi, Meisheng
author_facet Mo, Chengyu
Li, Wenjing
Jia, Kuntong
Liu, Wei
Yi, Meisheng
author_sort Mo, Chengyu
collection PubMed
description MicroRNAs (miRNAs) play important roles in post-transcriptional repression in nearly every biological process including germ cell development. Previously, we have identified a zebrafish germ plasm-specific miRNA miR-202-5p, which regulates PGC migration through targeting cdc42se1 to protect cdc42 expression. However, knockdown of cdc42se1 could not significantly rescue PGC migration in maternal miR-202 mutant (MmiR-202) embryos, indicating that there are other target genes of miR-202-5p required for the regulation of PGC migration. Herein, we revealed the transcriptional profiles of wild type and MmiR-202 PGCs and obtained 129 differentially expressed genes (DEGs), of which 42 DEGs were enriched cell migration-related signaling pathways. From these DEGs, we identified two novel miR-202-5p target genes prdm12b and rab10. Furthermore, we found that disruption of rab10 expression led to significantly migratory defects of PGC by overexpression of rab10 siRNA, or WT, inactive as well as active forms of rab10 mRNA, and WT rab10 overexpression mediated migratory defects could be partially but significantly rescued by overexpression of miR-202-5p, demonstrating that rab10 is an important factor involved miR-202-5p mediated regulation of PGC migration. Taken together, the present results provide significant information for understanding the molecular mechanism by which miR-202-5p regulates PGC migration in zebrafish.
format Online
Article
Text
id pubmed-8584686
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-85846862021-11-12 Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish Mo, Chengyu Li, Wenjing Jia, Kuntong Liu, Wei Yi, Meisheng Int J Mol Sci Article MicroRNAs (miRNAs) play important roles in post-transcriptional repression in nearly every biological process including germ cell development. Previously, we have identified a zebrafish germ plasm-specific miRNA miR-202-5p, which regulates PGC migration through targeting cdc42se1 to protect cdc42 expression. However, knockdown of cdc42se1 could not significantly rescue PGC migration in maternal miR-202 mutant (MmiR-202) embryos, indicating that there are other target genes of miR-202-5p required for the regulation of PGC migration. Herein, we revealed the transcriptional profiles of wild type and MmiR-202 PGCs and obtained 129 differentially expressed genes (DEGs), of which 42 DEGs were enriched cell migration-related signaling pathways. From these DEGs, we identified two novel miR-202-5p target genes prdm12b and rab10. Furthermore, we found that disruption of rab10 expression led to significantly migratory defects of PGC by overexpression of rab10 siRNA, or WT, inactive as well as active forms of rab10 mRNA, and WT rab10 overexpression mediated migratory defects could be partially but significantly rescued by overexpression of miR-202-5p, demonstrating that rab10 is an important factor involved miR-202-5p mediated regulation of PGC migration. Taken together, the present results provide significant information for understanding the molecular mechanism by which miR-202-5p regulates PGC migration in zebrafish. MDPI 2021-11-04 /pmc/articles/PMC8584686/ /pubmed/34769390 http://dx.doi.org/10.3390/ijms222111962 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Mo, Chengyu
Li, Wenjing
Jia, Kuntong
Liu, Wei
Yi, Meisheng
Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish
title Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish
title_full Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish
title_fullStr Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish
title_full_unstemmed Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish
title_short Proper Balance of Small GTPase rab10 Is Critical for PGC Migration in Zebrafish
title_sort proper balance of small gtpase rab10 is critical for pgc migration in zebrafish
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584686/
https://www.ncbi.nlm.nih.gov/pubmed/34769390
http://dx.doi.org/10.3390/ijms222111962
work_keys_str_mv AT mochengyu properbalanceofsmallgtpaserab10iscriticalforpgcmigrationinzebrafish
AT liwenjing properbalanceofsmallgtpaserab10iscriticalforpgcmigrationinzebrafish
AT jiakuntong properbalanceofsmallgtpaserab10iscriticalforpgcmigrationinzebrafish
AT liuwei properbalanceofsmallgtpaserab10iscriticalforpgcmigrationinzebrafish
AT yimeisheng properbalanceofsmallgtpaserab10iscriticalforpgcmigrationinzebrafish