Cargando…
Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application
The complex design of transportation infrastructure hinders communication between different roles in the project, which makes it difficult to promote the Integrated Project Delivery (IPD) mode. This paper discusses a design simulation and communication system based on Building Information Modeling a...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584753/ https://www.ncbi.nlm.nih.gov/pubmed/34762672 http://dx.doi.org/10.1371/journal.pone.0259046 |
_version_ | 1784597525740650496 |
---|---|
author | Hao, Ziqi Zhang, Wensheng Zhao, Yunche |
author_facet | Hao, Ziqi Zhang, Wensheng Zhao, Yunche |
author_sort | Hao, Ziqi |
collection | PubMed |
description | The complex design of transportation infrastructure hinders communication between different roles in the project, which makes it difficult to promote the Integrated Project Delivery (IPD) mode. This paper discusses a design simulation and communication system based on Building Information Modeling and Virtual Reality for transportation infrastructure (DSC-BV-TI system), integrated with BIM, with VR developed by using a game engine. Based on an analysis of the user’s demand, the system introduces a three-dimensional BIM model of traffic infrastructure in an immersive VR environment and realizes the simulation design, weather simulation, virtual driving, sight distance calculation, visual simulation and other functions of traffic infrastructure project by using the system’s safety assessment and scheme decision. The system is applied to the design of the Jinjiazhuang Extra-Long Tunnel project of the Yan-Chong Expressway in Hebei Province, which was built for the 2022 Winter Olympics. The results show that, using the DSC-BV-TI system, the designer has completed a display of the overall scheme: the user can use the steering wheel to drive a vehicle; use the head-mounted display to play the picture; realize the simulation and interaction in a variety of simulated weather conditions and environments; and use IPD mode to communicate and make decisions on the design scheme of the traffic infrastructure, tunnel speed limit and other aspects that play a key role. The DSC-BV-TI system has 8 advantages and 4 disadvantages identified through a questionnaire survey, the advantages including high fidelity, high efficiency and low cost. At the same time, according to the research results, three suggestions to help improve the system are discussed. DSC-BV-TI system as a communication bridge between the design team and other stakeholders reduces the communication gap and promotes the implementation of the IPD mode in transportation infrastructure projects. |
format | Online Article Text |
id | pubmed-8584753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-85847532021-11-12 Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application Hao, Ziqi Zhang, Wensheng Zhao, Yunche PLoS One Research Article The complex design of transportation infrastructure hinders communication between different roles in the project, which makes it difficult to promote the Integrated Project Delivery (IPD) mode. This paper discusses a design simulation and communication system based on Building Information Modeling and Virtual Reality for transportation infrastructure (DSC-BV-TI system), integrated with BIM, with VR developed by using a game engine. Based on an analysis of the user’s demand, the system introduces a three-dimensional BIM model of traffic infrastructure in an immersive VR environment and realizes the simulation design, weather simulation, virtual driving, sight distance calculation, visual simulation and other functions of traffic infrastructure project by using the system’s safety assessment and scheme decision. The system is applied to the design of the Jinjiazhuang Extra-Long Tunnel project of the Yan-Chong Expressway in Hebei Province, which was built for the 2022 Winter Olympics. The results show that, using the DSC-BV-TI system, the designer has completed a display of the overall scheme: the user can use the steering wheel to drive a vehicle; use the head-mounted display to play the picture; realize the simulation and interaction in a variety of simulated weather conditions and environments; and use IPD mode to communicate and make decisions on the design scheme of the traffic infrastructure, tunnel speed limit and other aspects that play a key role. The DSC-BV-TI system has 8 advantages and 4 disadvantages identified through a questionnaire survey, the advantages including high fidelity, high efficiency and low cost. At the same time, according to the research results, three suggestions to help improve the system are discussed. DSC-BV-TI system as a communication bridge between the design team and other stakeholders reduces the communication gap and promotes the implementation of the IPD mode in transportation infrastructure projects. Public Library of Science 2021-11-11 /pmc/articles/PMC8584753/ /pubmed/34762672 http://dx.doi.org/10.1371/journal.pone.0259046 Text en © 2021 Hao et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hao, Ziqi Zhang, Wensheng Zhao, Yunche Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application |
title | Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application |
title_full | Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application |
title_fullStr | Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application |
title_full_unstemmed | Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application |
title_short | Integrated BIM and VR to implement IPD mode in transportation infrastructure projects: System design and case application |
title_sort | integrated bim and vr to implement ipd mode in transportation infrastructure projects: system design and case application |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584753/ https://www.ncbi.nlm.nih.gov/pubmed/34762672 http://dx.doi.org/10.1371/journal.pone.0259046 |
work_keys_str_mv | AT haoziqi integratedbimandvrtoimplementipdmodeintransportationinfrastructureprojectssystemdesignandcaseapplication AT zhangwensheng integratedbimandvrtoimplementipdmodeintransportationinfrastructureprojectssystemdesignandcaseapplication AT zhaoyunche integratedbimandvrtoimplementipdmodeintransportationinfrastructureprojectssystemdesignandcaseapplication |