Cargando…

Deficiency of ASGR1 in pigs recapitulates reduced risk factor for cardiovascular disease in humans

Genetic variants in the asialoglycoprotein receptor 1 (ASGR1) are associated with a reduced risk of cardiovascular disease (CVD) in humans. However, the underlying molecular mechanism remains elusive. Given the cardiovascular similarities between pigs and humans, we generated ASGR1-deficient pigs us...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Baocai, Shi, Xiaochen, Li, Yan, Xia, Bo, Zhou, Jia, Du, Minjie, Xing, Xiangyang, Bai, Liang, Liu, Enqi, Alvarez, Fernando, Jin, Long, Deng, Shaoping, Mitchell, Grant A., Pan, Dengke, Li, Mingzhou, Wu, Jiangwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584755/
https://www.ncbi.nlm.nih.gov/pubmed/34762653
http://dx.doi.org/10.1371/journal.pgen.1009891
Descripción
Sumario:Genetic variants in the asialoglycoprotein receptor 1 (ASGR1) are associated with a reduced risk of cardiovascular disease (CVD) in humans. However, the underlying molecular mechanism remains elusive. Given the cardiovascular similarities between pigs and humans, we generated ASGR1-deficient pigs using the CRISPR/Cas9 system. These pigs show age-dependent low levels of non-HDL-C under standard diet. When received an atherogenic diet for 6 months, ASGR1-deficient pigs show lower levels of non-HDL-C and less atherosclerotic lesions than that of controls. Furthermore, by analysis of hepatic transcriptome and in vivo cholesterol metabolism, we show that ASGR1 deficiency reduces hepatic de novo cholesterol synthesis by downregulating 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), and increases cholesterol clearance by upregulating the hepatic low-density lipoprotein receptor (LDLR), which together contribute to the low levels of non-HDL-C. Despite the cardioprotective effect, we unexpectedly observed mild to moderate hepatic injury in ASGR1-deficient pigs, which has not been documented in humans with ASGR1 variants. Thus, targeting ASGR1 might be an effective strategy to reduce hypercholesterolemia and atherosclerosis, whereas further clinical evidence is required to assess its hepatic impact.