Cargando…

linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser

In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create...

Descripción completa

Detalles Bibliográficos
Autores principales: Waschke, Johannes, Hlawitschka, Mario, Anlas, Kerim, Trivedi, Vikas, Roeder, Ingo, Huisken, Jan, Scherf, Nico
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584757/
https://www.ncbi.nlm.nih.gov/pubmed/34723958
http://dx.doi.org/10.1371/journal.pcbi.1009503
_version_ 1784597526658154496
author Waschke, Johannes
Hlawitschka, Mario
Anlas, Kerim
Trivedi, Vikas
Roeder, Ingo
Huisken, Jan
Scherf, Nico
author_facet Waschke, Johannes
Hlawitschka, Mario
Anlas, Kerim
Trivedi, Vikas
Roeder, Ingo
Huisken, Jan
Scherf, Nico
author_sort Waschke, Johannes
collection PubMed
description In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data.
format Online
Article
Text
id pubmed-8584757
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-85847572021-11-12 linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser Waschke, Johannes Hlawitschka, Mario Anlas, Kerim Trivedi, Vikas Roeder, Ingo Huisken, Jan Scherf, Nico PLoS Comput Biol Research Article In biology, we are often confronted with information-rich, large-scale trajectory data, but exploring and communicating patterns in such data can be a cumbersome task. Ideally, the data should be wrapped with an interactive visualisation in one concise packet that makes it straightforward to create and test hypotheses collaboratively. To address these challenges, we have developed a tool, linus, which makes the process of exploring and sharing 3D trajectories as easy as browsing a website. We provide a python script that reads trajectory data, enriches them with additional features such as edge bundling or custom axes, and generates an interactive web-based visualisation that can be shared online. linus facilitates the collaborative discovery of patterns in complex trajectory data. Public Library of Science 2021-11-01 /pmc/articles/PMC8584757/ /pubmed/34723958 http://dx.doi.org/10.1371/journal.pcbi.1009503 Text en © 2021 Waschke et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Waschke, Johannes
Hlawitschka, Mario
Anlas, Kerim
Trivedi, Vikas
Roeder, Ingo
Huisken, Jan
Scherf, Nico
linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser
title linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser
title_full linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser
title_fullStr linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser
title_full_unstemmed linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser
title_short linus: Conveniently explore, share, and present large-scale biological trajectory data in a web browser
title_sort linus: conveniently explore, share, and present large-scale biological trajectory data in a web browser
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584757/
https://www.ncbi.nlm.nih.gov/pubmed/34723958
http://dx.doi.org/10.1371/journal.pcbi.1009503
work_keys_str_mv AT waschkejohannes linusconvenientlyexploreshareandpresentlargescalebiologicaltrajectorydatainawebbrowser
AT hlawitschkamario linusconvenientlyexploreshareandpresentlargescalebiologicaltrajectorydatainawebbrowser
AT anlaskerim linusconvenientlyexploreshareandpresentlargescalebiologicaltrajectorydatainawebbrowser
AT trivedivikas linusconvenientlyexploreshareandpresentlargescalebiologicaltrajectorydatainawebbrowser
AT roederingo linusconvenientlyexploreshareandpresentlargescalebiologicaltrajectorydatainawebbrowser
AT huiskenjan linusconvenientlyexploreshareandpresentlargescalebiologicaltrajectorydatainawebbrowser
AT scherfnico linusconvenientlyexploreshareandpresentlargescalebiologicaltrajectorydatainawebbrowser