Cargando…
OutbreakFlow: Model-based Bayesian inference of disease outbreak dynamics with invertible neural networks and its application to the COVID-19 pandemics in Germany
Mathematical models in epidemiology are an indispensable tool to determine the dynamics and important characteristics of infectious diseases. Apart from their scientific merit, these models are often used to inform political decisions and interventional measures during an ongoing outbreak. However,...
Autores principales: | Radev, Stefan T., Graw, Frederik, Chen, Simiao, Mutters, Nico T., Eichel, Vanessa M., Bärnighausen, Till, Köthe, Ullrich |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584772/ https://www.ncbi.nlm.nih.gov/pubmed/34695111 http://dx.doi.org/10.1371/journal.pcbi.1009472 |
Ejemplares similares
-
Neural superstatistics for Bayesian estimation of dynamic cognitive models
por: Schumacher, Lukas, et al.
Publicado: (2023) -
Genomic Investigation and Successful Containment of an Intermittent Common Source Outbreak of OXA-48-Producing Enterobacter cloacae Related to Hospital Shower Drains
por: Nurjadi, Dennis, et al.
Publicado: (2021) -
Pseudobacteremia outbreak of biofilm-forming Achromobacter xylosoxidans – environmental transmission
por: Günther, Frank, et al.
Publicado: (2016) -
Buying Time for an Effective Epidemic Response: The Impact of a Public Holiday for Outbreak Control on COVID-19 Epidemic Spread
por: Chen, Simiao, et al.
Publicado: (2020) -
Vancomycin-Resistant Enterococci Outbreak, Germany, and Calculation of Outbreak Start
por: Sagel, Ulrich, et al.
Publicado: (2008)