Cargando…
Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L
Laser powder bed fusion (LPBF) has a wide range of uses in high-tech industries, including the aerospace and biomedical fields. For LPBF, the flow of molten metal is crucial; until now, however, the flow in the melt pool has not been described thoroughly in 3D. Here, we provide full-field mapping an...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585046/ https://www.ncbi.nlm.nih.gov/pubmed/34771790 http://dx.doi.org/10.3390/ma14216264 |
_version_ | 1784597596253192192 |
---|---|
author | Ur Rehman, Asif Pitir, Fatih Salamci, Metin Uymaz |
author_facet | Ur Rehman, Asif Pitir, Fatih Salamci, Metin Uymaz |
author_sort | Ur Rehman, Asif |
collection | PubMed |
description | Laser powder bed fusion (LPBF) has a wide range of uses in high-tech industries, including the aerospace and biomedical fields. For LPBF, the flow of molten metal is crucial; until now, however, the flow in the melt pool has not been described thoroughly in 3D. Here, we provide full-field mapping and flow measurement of melt pool dynamics in laser powder bed fusion, through a high-fidelity numerical model using the finite volume method. The influence of Marangoni flow, evaporation, as well as recoil pressure have been included in the model. Single-track experiments were conducted for validation. The temperature profiles at different power and speed parameters were simulated, and results were compared with experimental temperature recordings. The flow dynamics in a single track were exposed. The numerical and experimental findings revealed that even in the same melting track, the melt pool’s height and width can vary due to the strong Marangoni force. The model showed that the variation in density and volume for the same melting track was one of the critical reasons for defects. The acquired findings shed important light on laser additive manufacturing processes and pave the way for the development of robust, computational models with a high degree of reliability. |
format | Online Article Text |
id | pubmed-8585046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85850462021-11-12 Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L Ur Rehman, Asif Pitir, Fatih Salamci, Metin Uymaz Materials (Basel) Article Laser powder bed fusion (LPBF) has a wide range of uses in high-tech industries, including the aerospace and biomedical fields. For LPBF, the flow of molten metal is crucial; until now, however, the flow in the melt pool has not been described thoroughly in 3D. Here, we provide full-field mapping and flow measurement of melt pool dynamics in laser powder bed fusion, through a high-fidelity numerical model using the finite volume method. The influence of Marangoni flow, evaporation, as well as recoil pressure have been included in the model. Single-track experiments were conducted for validation. The temperature profiles at different power and speed parameters were simulated, and results were compared with experimental temperature recordings. The flow dynamics in a single track were exposed. The numerical and experimental findings revealed that even in the same melting track, the melt pool’s height and width can vary due to the strong Marangoni force. The model showed that the variation in density and volume for the same melting track was one of the critical reasons for defects. The acquired findings shed important light on laser additive manufacturing processes and pave the way for the development of robust, computational models with a high degree of reliability. MDPI 2021-10-21 /pmc/articles/PMC8585046/ /pubmed/34771790 http://dx.doi.org/10.3390/ma14216264 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ur Rehman, Asif Pitir, Fatih Salamci, Metin Uymaz Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L |
title | Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L |
title_full | Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L |
title_fullStr | Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L |
title_full_unstemmed | Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L |
title_short | Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed Fusion of SS316L |
title_sort | full-field mapping and flow quantification of melt pool dynamics in laser powder bed fusion of ss316l |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585046/ https://www.ncbi.nlm.nih.gov/pubmed/34771790 http://dx.doi.org/10.3390/ma14216264 |
work_keys_str_mv | AT urrehmanasif fullfieldmappingandflowquantificationofmeltpooldynamicsinlaserpowderbedfusionofss316l AT pitirfatih fullfieldmappingandflowquantificationofmeltpooldynamicsinlaserpowderbedfusionofss316l AT salamcimetinuymaz fullfieldmappingandflowquantificationofmeltpooldynamicsinlaserpowderbedfusionofss316l |