Cargando…
Investigation and Optimization of Mxene Functionalized Mesoporous Titania Films as Efficient Photoelectrodes
Three-dimensional mesoporous TiO(2) scaffolds of anatase phase possess inherent eximious optical behavior that is beneficial for photoelectrodes used for solar energy conversion applications. In this regard; substantial efforts have been devoted to maximizing the UV and/or visible light absorption e...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585131/ https://www.ncbi.nlm.nih.gov/pubmed/34771820 http://dx.doi.org/10.3390/ma14216292 |
Sumario: | Three-dimensional mesoporous TiO(2) scaffolds of anatase phase possess inherent eximious optical behavior that is beneficial for photoelectrodes used for solar energy conversion applications. In this regard; substantial efforts have been devoted to maximizing the UV and/or visible light absorption efficiency; and suppressing the annihilation of photogenerated charged species; in pristine mesoporous TiO(2) structures for improved solar illumination conversion efficiency. This study provides fundamental insights into the use of Mxene functionalized mesoporous TiO(2) as a photoelectrode. This novel combination of Mxene functionalized TiO(2) electrodes with and without TiCl(4) treatment was successfully optimized to intensify the process of photon absorption; charge segregation and photocurrent; resulting in superior photoelectrode performance. The photocurrent measurements of the prepared photoelectrodes were significantly enhanced with increased contents of Mxene due to improved absorption efficiency within the visible region; as verified by UV–Vis absorption spectroscopy. The anatase phase of TiO(2) was significantly augmented due to increased contents of Mxene and postdeposition heat treatments; as evidenced by structural analysis. Consequently; an appreciable coverage of well-developed grains on the FTO surface was observed in SEM images. As such; these newly fabricated conductive mesoporous TiO(2) photoelectrodes are potential candidates for photoinduced energy conversion and storage applications. |
---|