Cargando…
Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal
Binary composite was synthesized via coupling BiOCl with alkali leached natural clinoptilolite (40B0/CN), which showed retarded recombination of photo-generated carriers. The clinoptilolite was pretreated with alkali leaching, resulting in a larger pore size and high cation exchange capacity. The mo...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585134/ https://www.ncbi.nlm.nih.gov/pubmed/34771992 http://dx.doi.org/10.3390/ma14216469 |
_version_ | 1784597618010095616 |
---|---|
author | Di, Yonghao Zhang, Xiangwei Wang, Xinlin Zheng, Shuilin |
author_facet | Di, Yonghao Zhang, Xiangwei Wang, Xinlin Zheng, Shuilin |
author_sort | Di, Yonghao |
collection | PubMed |
description | Binary composite was synthesized via coupling BiOCl with alkali leached natural clinoptilolite (40B0/CN), which showed retarded recombination of photo-generated carriers. The clinoptilolite was pretreated with alkali leaching, resulting in a larger pore size and high cation exchange capacity. The modified clinoptilolite was more feasible for the growth of BiOCl and to promote the adsorption ability for formaldehyde (HCHO). In addition, the cation exchange capacity was conducive to anchor Bi(3+), further leading to the reduction of the particle size of BiOCl. The carrier effect of alkali leached natural clinoptilolite promoted the amorphous transformation of BiOCl at low temperature, which simultaneously produced more distortions and defects in the BiOCl lattice. The 40B0/CN composite exhibited the superior light absorption ability with a narrower band gap. The photocatalytic degradation rate for HCHO of 40B0/CN under solar light reached 87.7%, and the reaction rate constant was 0.0166 min(−1), which was 1.6 times higher than that of BiOCl. This paper gave a deep insight into photocatalytic technology to efficiently degrade formaldehyde. |
format | Online Article Text |
id | pubmed-8585134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-85851342021-11-12 Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal Di, Yonghao Zhang, Xiangwei Wang, Xinlin Zheng, Shuilin Materials (Basel) Article Binary composite was synthesized via coupling BiOCl with alkali leached natural clinoptilolite (40B0/CN), which showed retarded recombination of photo-generated carriers. The clinoptilolite was pretreated with alkali leaching, resulting in a larger pore size and high cation exchange capacity. The modified clinoptilolite was more feasible for the growth of BiOCl and to promote the adsorption ability for formaldehyde (HCHO). In addition, the cation exchange capacity was conducive to anchor Bi(3+), further leading to the reduction of the particle size of BiOCl. The carrier effect of alkali leached natural clinoptilolite promoted the amorphous transformation of BiOCl at low temperature, which simultaneously produced more distortions and defects in the BiOCl lattice. The 40B0/CN composite exhibited the superior light absorption ability with a narrower band gap. The photocatalytic degradation rate for HCHO of 40B0/CN under solar light reached 87.7%, and the reaction rate constant was 0.0166 min(−1), which was 1.6 times higher than that of BiOCl. This paper gave a deep insight into photocatalytic technology to efficiently degrade formaldehyde. MDPI 2021-10-28 /pmc/articles/PMC8585134/ /pubmed/34771992 http://dx.doi.org/10.3390/ma14216469 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Di, Yonghao Zhang, Xiangwei Wang, Xinlin Zheng, Shuilin Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal |
title | Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal |
title_full | Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal |
title_fullStr | Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal |
title_full_unstemmed | Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal |
title_short | Construction of BiOCl/Clinoptilolite Composite Photocatalyst for Boosting Formaldehyde Removal |
title_sort | construction of biocl/clinoptilolite composite photocatalyst for boosting formaldehyde removal |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8585134/ https://www.ncbi.nlm.nih.gov/pubmed/34771992 http://dx.doi.org/10.3390/ma14216469 |
work_keys_str_mv | AT diyonghao constructionofbioclclinoptilolitecompositephotocatalystforboostingformaldehyderemoval AT zhangxiangwei constructionofbioclclinoptilolitecompositephotocatalystforboostingformaldehyderemoval AT wangxinlin constructionofbioclclinoptilolitecompositephotocatalystforboostingformaldehyderemoval AT zhengshuilin constructionofbioclclinoptilolitecompositephotocatalystforboostingformaldehyderemoval |